アジア太平洋数学オリンピックのナイスな整数問題 - 質問解決D.B.(データベース)

アジア太平洋数学オリンピックのナイスな整数問題

問題文全文(内容文):
$ a,b,cが自然数である.
a^2+b+c,a+b^2+c,a+b+c^2,この3つのすべてが平方数になることはないことを示せ.$
単元: #数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a,b,cが自然数である.
a^2+b+c,a+b^2+c,a+b+c^2,この3つのすべてが平方数になることはないことを示せ.$
投稿日:2022.07.11

<関連動画>

【ガチ良問】素数が絡んだ整数問題の難問です【数学】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
pを素数,kを自然数とする。
$12p^{2}+12p+1=k^{2}$を満たすようなpの値を求めよ。
この動画を見る 

開成高校 最小公倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 鈴木貫太郎
問題文全文(内容文):
開成高校過去問題
最小公倍数が2010となる異なる2つの自然数の組み合わせの個数
この動画を見る 

福田の数学〜約数の個数から元の数を特定する難問〜慶應義塾大学2023年総合政策学部第1問前編〜約数の個数と素因数分解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数nの正の約数の個数をd(n)と書くことにする。たとえば、 10 の正の約数は1 , 2 , 5 , 10 であるから d(10)= 4 である。
( 1 ) 2023 以下の正の整数nの中でd(n)=5となる数は$\fbox{ア}$個ある。
( 2 ) 2023 以下の正の整数nの中でd(n)=15となる数は$\fbox{イ}$個ある。
( 3 ) 2023 以下の正の整数nの中でd(n) が最大となるのは$n=\fbox{ウ}$のときである。
この動画を見る 

【数A】整数の性質:√n²+40が自然数となるような自然数nをすべて求めよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
√n²+40が自然数となるような自然数nをすべて求めよ。
この動画を見る 

整数問題だよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+n+144$の下2桁が○○となる3桁の自然数nの最小値と最大値
この動画を見る 
PAGE TOP