約数・倍数・整数の割り算と余り・合同式

【数B】【数列】自然数の式の証明2 ※問題文は概要欄

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
$n$は整数とする。
(1)連続する2個の整数には、必ず$2$の倍数が含まれることを利用して、 $n^2+3n$が$2$の倍数であることを証明せよ。
(2)連続する3個の整数には、必ず$3$の倍数が含まれることを利用して、 $4n^3+3n^2+2n$が$3$の倍数であることを証明せよ。
この動画を見る
$n$は整数とする。
(1)連続する2個の整数には、必ず$2$の倍数が含まれることを利用して、 $n^2+3n$が$2$の倍数であることを証明せよ。
(2)連続する3個の整数には、必ず$3$の倍数が含まれることを利用して、 $4n^3+3n^2+2n$が$3$の倍数であることを証明せよ。
【数B】【数列】自然数の式の証明1 ※問題文は概要欄

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
この動画を見る
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
福田のおもしろ数学386〜ルートの付いた不定方程式の解

単元:
#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師:
福田次郎
問題文全文(内容文):
a,b,cは0以上の整数
\begin{equation}
\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{2026}
\end{equation}
を満たす(a,b,c)の組をすべて求めよ。
この動画を見る
a,b,cは0以上の整数
\begin{equation}
\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{2026}
\end{equation}
を満たす(a,b,c)の組をすべて求めよ。
福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第3問〜有限小数の性質と論証

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1) a, b, nは自然数の定数で、bは4の倍数ではなく、n$ \geq$2 とする。aが$2^n$の倍数であるが、$ 2^{n +1}$の倍数ではないとき、a(a+b), 2a(2a + b) のいずれかは、$2 ^{n + 1}$ の倍数であるが、$2^{n + 2}$の倍数ではないことを示せ。
(2) bは自然数の定数で、4の倍数ではないとする。3以上の任意の自然数nに対して、次を満たす自然数 $a_n$ が存在することを示せ。$$ \frac{a_n(a_n + b)}{2^{2^n}}$$は、小数第n位の数字が5である小数第n位までの有限小数で表される。
この動画を見る
次の問いに答えよ。
(1) a, b, nは自然数の定数で、bは4の倍数ではなく、n$ \geq$2 とする。aが$2^n$の倍数であるが、$ 2^{n +1}$の倍数ではないとき、a(a+b), 2a(2a + b) のいずれかは、$2 ^{n + 1}$ の倍数であるが、$2^{n + 2}$の倍数ではないことを示せ。
(2) bは自然数の定数で、4の倍数ではないとする。3以上の任意の自然数nに対して、次を満たす自然数 $a_n$ が存在することを示せ。$$ \frac{a_n(a_n + b)}{2^{2^n}}$$は、小数第n位の数字が5である小数第n位までの有限小数で表される。
素数を扱う整数問題の良問!分からなければ実験あるのみ!【京都大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
f(x)=x³+2x²+2
|f(n)|と|f(n+1)|が素数となる整数nをすべて求めよ。
この動画を見る
f(x)=x³+2x²+2
|f(n)|と|f(n+1)|が素数となる整数nをすべて求めよ。
福田のおもしろ数学377〜3つの素数の和と積の一方が他方の101倍になる条件

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$p, q, rを素数とする。p+q+rとpqrの一方が他方の101倍になるような素数の組(p, q, r)をすべて求めて下さい。$
この動画を見る
$p, q, rを素数とする。p+q+rとpqrの一方が他方の101倍になるような素数の組(p, q, r)をすべて求めて下さい。$
福田のおもしろ数学371〜初項が素数で漸化式で定義された数列が素数でない項をもつ証明

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$a_1=p$(素数), $a_{n+1}=2a_n-1$で定まる数列には素数でない項が存在する。証明せよ。
この動画を見る
$a_1=p$(素数), $a_{n+1}=2a_n-1$で定まる数列には素数でない項が存在する。証明せよ。
福田のおもしろ数学370〜フェルマーの小定理の証明

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
フェルマーの小定理
素数$p$と整数$a$が互いに素のとき
$a^{p-1}\equiv1~~({\rm mod} ~p)$であることを証明せよ。
この動画を見る
フェルマーの小定理
素数$p$と整数$a$が互いに素のとき
$a^{p-1}\equiv1~~({\rm mod} ~p)$であることを証明せよ。
福田のおもしろ数学367〜3変数の不定方程式の整数解を求める考え方

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a,b,c$は$0$以上の整数であり、$a \geqq b \geqq c$を満たしている。
$a^3+9b^2+9c^2+7=1997$を満たす$(a,b,c)$を全て求めよ。
この動画を見る
$a,b,c$は$0$以上の整数であり、$a \geqq b \geqq c$を満たしている。
$a^3+9b^2+9c^2+7=1997$を満たす$(a,b,c)$を全て求めよ。
解ける?一橋大学の整数問題の難問! #Shorts #ずんだもん #勉強 #数学

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを2以上20以下の整数、
kを1以上n-1以下の整数とする。
n+2Ck+1=2(nCk-1+nCk+1)
が成り立つような整数の組(n,k)を求めよ。
この動画を見る
nを2以上20以下の整数、
kを1以上n-1以下の整数とする。
n+2Ck+1=2(nCk-1+nCk+1)
が成り立つような整数の組(n,k)を求めよ。
福田のおもしろ数学360〜1が連続1991個並ぶ数は素数か

難関大学が好きなパターンの整数問題! #Shorts #ずんだもん #勉強 #数学

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
abcd=a+b+c+d
を満たす正の整数a,b,c,dをすべて求めよ。
この動画を見る
abcd=a+b+c+d
を満たす正の整数a,b,c,dをすべて求めよ。
【約数の個数】N個の約数を持つ整数について考えよう【早稲田大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の約数の個数が28個の最小の自然数は?
この動画を見る
正の約数の個数が28個の最小の自然数は?
整数問題の難問!感覚が大事になる問題です

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
6・3^3x +1=7・5^2xを満たす0以上の整数xを求めよ。
この動画を見る
6・3^3x +1=7・5^2xを満たす0以上の整数xを求めよ。
早稲田の整数問題!素数を扱う整数問題の良い練習になります

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の条件を満たす正の整数の組(a,b,n)を求めよ。
n>=2,bは素数,a^2=b^n+225
この動画を見る
次の条件を満たす正の整数の組(a,b,n)を求めよ。
n>=2,bは素数,a^2=b^n+225
【整数問題】素数を扱う難問!2通りで解説!【奈良県立医科大学】

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
aを2以上の整数、pを2より大きい素数とする。ある正の整数kに対して等式a^p-1 -1=p^kが成り立つのは、a=2,p=3のみであることを示せ。
この動画を見る
aを2以上の整数、pを2より大きい素数とする。ある正の整数kに対して等式a^p-1 -1=p^kが成り立つのは、a=2,p=3のみであることを示せ。
福田のおもしろ数学356〜2つのルートの和が自然数となる条件

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\sqrt{n}$と$\sqrt{n+2025}$が自然数となるような自然数$n$をすべて求めて下さい。
この動画を見る
$\sqrt{n}$と$\sqrt{n+2025}$が自然数となるような自然数$n$をすべて求めて下さい。
頻出!「あれ」を利用して余りを求める!

単元:
#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
21^2015を400で割ったときの余りを求めよ。
この動画を見る
21^2015を400で割ったときの余りを求めよ。
京大の整数問題!京大はこのパターンが大好き

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
pが素数ならばp^4 +14は素数でないことを示せ。
この動画を見る
pが素数ならばp^4 +14は素数でないことを示せ。
福田のおもしろ数学352〜三角形の3辺の長さと周の長さと面積

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$3$ 辺の長さが $a,a,b$、周の長さが $P$、面積が $A$ の三角形がある。$b$ と $P$ が整数かつ $P=A^2$ のとき、$(a,b)$ を求めよ。
この動画を見る
$3$ 辺の長さが $a,a,b$、周の長さが $P$、面積が $A$ の三角形がある。$b$ と $P$ が整数かつ $P=A^2$ のとき、$(a,b)$ を求めよ。
整数問題の難問!誘導なしで解けたらすごい! #Shorts #ずんだもん #勉強 #数学

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪医科薬科大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
3^x-2^y=1をみたす自然数x,yの組をすべて求めよ。
この動画を見る
3^x-2^y=1をみたす自然数x,yの組をすべて求めよ。
2次方程式の解を四捨五入!?あまり見かけない問題。解ける? #Shorts #ずんだもん #勉強 #数学

単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
m,nを正の整数とする。xについての2次方程式 12x^2-mx+n=0 の2つの実数解を小数第2位で四捨五入して0.3および0.7を得た。m,nを求めよ。
この動画を見る
m,nを正の整数とする。xについての2次方程式 12x^2-mx+n=0 の2つの実数解を小数第2位で四捨五入して0.3および0.7を得た。m,nを求めよ。
対数と整数の融合問題!難問です!解ける? #Shorts #ずんだもん #勉強 #数学

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
logy_(6x+y)=xを満たす正の整数x,yの組を求めよ。
この動画を見る
logy_(6x+y)=xを満たす正の整数x,yの組を求めよ。
福田のおもしろ数学347〜余りを求める問題

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
整数$a$に対して$a^2$を自然数$n$で割ると1余る。次の各場合に$a$を$n$で割った余りを求めて下さい。$(1)n=16 (2)n=3^k$ ($k$は自然数)
この動画を見る
整数$a$に対して$a^2$を自然数$n$で割ると1余る。次の各場合に$a$を$n$で割った余りを求めて下さい。$(1)n=16 (2)n=3^k$ ($k$は自然数)
福田のおもしろ数学338〜不定方程式の整数解

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a^2+b=b^{2025}$を満たす整数$a,b$を求めて下さい。
この動画を見る
$a^2+b=b^{2025}$を満たす整数$a,b$を求めて下さい。
福田のおもしろ数学336〜連続する奇数の素数の和は3つ以上の因数をもつ証明

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
連続する奇数の素数$p,q$に対し$p+q$は$1$より大きい3個以上の整数の積で表される。これを証明してください。
この動画を見る
連続する奇数の素数$p,q$に対し$p+q$は$1$より大きい3個以上の整数の積で表される。これを証明してください。
これは超良問の整数問題! #尾道市立大学2023 #整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x,y$を整数とする
$p=x^3+y^3$と表せる素数$p$を
小さいものから順に4つ求めよ.
2023尾道市立大学後期過去問題
この動画を見る
$x,y$を整数とする
$p=x^3+y^3$と表せる素数$p$を
小さいものから順に4つ求めよ.
2023尾道市立大学後期過去問題
最後の計算法してる?

単元:
#算数(中学受験)#計算と数の性質#数の性質その他#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
約分のコツに関する動画です
この動画を見る
約分のコツに関する動画です
福田のおもしろ数学330〜三角形の成立条件と条件を満たす三角形の個数

単元:
#数A#図形の性質#整数の性質#三角形の辺の比(内分・外分・二等分線)#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
自然数$n\geqq 3$に対して$f(n)$を各辺の長さが整数かつ周の長さが$n$である三角形の個数で定義する。
(例えば$f(3)=1,f(4)=0,f(7)=2$である)
$f(1999)\geq f(1966),f(2000)=f(1997)$を示せ。
この動画を見る
自然数$n\geqq 3$に対して$f(n)$を各辺の長さが整数かつ周の長さが$n$である三角形の個数で定義する。
(例えば$f(3)=1,f(4)=0,f(7)=2$である)
$f(1999)\geq f(1966),f(2000)=f(1997)$を示せ。
福田のおもしろ数学329〜商が平方数となる正の整数の個数と総和

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\frac{13!}{m}$が平方数となる正の整数mの個数と総和を求めて下さい。
この動画を見る
$\frac{13!}{m}$が平方数となる正の整数mの個数と総和を求めて下さい。