福田の数学〜約数の個数から元の数を特定する難問〜慶應義塾大学2023年総合政策学部第1問後編〜約数の個数と素因数分解 - 質問解決D.B.(データベース)

福田の数学〜約数の個数から元の数を特定する難問〜慶應義塾大学2023年総合政策学部第1問後編〜約数の個数と素因数分解

問題文全文(内容文):
整数nの正の約数の個数をd(n)と書くことにする。たとえば、 10 の正の約数は1 , 2 , 5 , 10 であるから d(10)= 4 である。
( 1 ) 2023 以下の正の整数nの中でd(n)=5となる数は$\fbox{ア}$個ある。
( 2 ) 2023 以下の正の整数nの中でd(n)=15となる数は$\fbox{イ}$個ある。
( 3 ) 2023 以下の正の整数nの中でd(n) が最大となるのは$n=\fbox{ウ}$のときである。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数nの正の約数の個数をd(n)と書くことにする。たとえば、 10 の正の約数は1 , 2 , 5 , 10 であるから d(10)= 4 である。
( 1 ) 2023 以下の正の整数nの中でd(n)=5となる数は$\fbox{ア}$個ある。
( 2 ) 2023 以下の正の整数nの中でd(n)=15となる数は$\fbox{イ}$個ある。
( 3 ) 2023 以下の正の整数nの中でd(n) が最大となるのは$n=\fbox{ウ}$のときである。
投稿日:2023.12.01

<関連動画>

自作問題・良問(自画自賛)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nは自然数
$4^{7n-3}+5^{2n+3}$
は必ずある素数をもつ
ある素数を求めよ

$4^{n+1}+5^{2n-1}$
は21の倍数であることを証明しなさい
この動画を見る 

【数A】整数の性質:整数の正の約数の個数とその総和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学A 場合の数と確率】
12の正の約数の個数とその総和を求めよ。
(出典元)4STEP数学Aより
この動画を見る 

【整数問題】考えられる候補は何パターンだろうか【慶應義塾大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$6a^{3}+11a^{2}b^{2}c+3ab^{3}c$=6270を満たす(a,b,c)の組をすべて求めよ。
ただし、a,b,cはそれぞれ2以上の整数とする。
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ p,qを相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。\\
・係数はすべて整数1でx^2の係数は1である。\hspace{100pt}\\
・f(1)=pqである。\hspace{193pt}\\
・方程式f(x)=0は整数解をもつ。\hspace{135pt}\\
以下の問いに答えよ。\hspace{200pt}\\
\\
(1)f(x)をすべて求めよ。\hspace{170pt}\\
(2)(1)で求めたものをf_1(x),f_2(x),\ldots,f_m(x)とする。2m次方程式\hspace{3pt}\\
f_1(x)×f_2(x)×\ldots×f_m(x)=0\hspace{100pt}\\
の相異なる解の総和はp,qによらないことを示せ。\hspace{60pt}
\end{eqnarray}
この動画を見る 

【数A】整数の性質:慶應義塾大学 1の位の数は?

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一の位の数(合同式の利用):十進法の表記法で考えよう。
(1)2¹⁰⁰の一の位の数 字を求めよう。
(2)3¹⁰⁰⁰の一の位の数字を求めよう。
(3)a=3³³とするとき、3^a の一の位の数字を求めよう。
この動画を見る 
PAGE TOP