場合の数 数学オリンピック予選 - 質問解決D.B.(データベース)

場合の数 数学オリンピック予選

問題文全文(内容文):
2001個の自然数1,2,3,2001の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は0とする。)

出典:数学オリンピック 予選問題
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2001個の自然数1,2,3,2001の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は0とする。)

出典:数学オリンピック 予選問題
投稿日:2019.06.09

<関連動画>

福田のわかった数学〜高校1年生089〜確率(9)反復試行の確率(3)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学A 確率(9) 反復試行(3)
点Pをxy平面上の原点におき、次の規則で動かす。
さいころを1回振るごとに
1,2,3の目が出たらx軸方向へ1平行移動
4,5の目が出たらy軸方向へ1平行移動
6の目が出たらx軸方向へ1、y軸方向へ1平行移動
さいころを6回振って点Pが(5,3)に位置する確率を求めよ。
この動画を見る 

福田の数学〜東北大学2024年理系第3問〜確率漸化式と複素数平面の融合

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3 n を2以上の整数とする。それぞれ A, A, B と書かれた 3 枚のカードから無作為に 1 枚抜き出し、カードをもとに戻す試行を考える。この試行を n 回繰り返し、抜き出したカードの文字を順に左から右に並べ、n 文字の文字列を作る。作った文字列内に AAA の並びがある場合は 不可 とする。また、作った文字列内に BB の並びがある場合も 不可 とする。これらの場合以外は 可 とする。

例えば n=6 のとき、文字列 AAAABAABBBAAABBABBBBBAAA などは 不可 で、文字列 BABAABBABABA などは 可 である。
作った文字列が 可 でかつ右端の 2 文字が AA である確率を pn、作った文字列が 可 でかつ右端の 2 文字が BA である確率を qn、作った文字列が 可 でかつ右端の文字が B である確率を rn とそれぞれおく。

(1) p2, q2, r2 をそれぞれ求めよ。また、pn+1, qn+1, rn+1pn, qn, rn を用いてそれぞれ表せ。
(2)pn+2qn+2rnnを用いて表せ。
(3)pn+iqn(1+i)rnnを用いて表せ。ただし、iは虚数単位である。
(4)pn=rn を満たすための、nの必要十分条件を求めよ。
この動画を見る 

2022近畿大(医)場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n人を区別のある 部屋に入れます。
0人部屋はダメ

(1)2部屋 (2)3部屋 (3)4部屋

何通りか求めよ。

2022年 近畿大学医学部 過去問
この動画を見る 

【高校数学】原因の確率~病原菌の問題~ 2-9【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある病原菌の検査試薬は、病原菌に感染しているのに誤って陰性と判断する確率が
1%, 「感染していないのに誤って陽性と判断する確率が2%である。全体の1%がこの
病原菌に感染している集団から1つの個体を取り出すとき、陽性だったのに、実際
には病原菌に感染していない確率を求めよ。
この動画を見る 

数学「大学入試良問集」【4−1 組分け問題①】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
何人かの人をいくつかの部屋に分ける問題を考える。
ただし、各部屋は十分に大きく、定員については考慮しなくてよい。
(1)
7人を2つの部屋A,Bに分ける。
 (ⅰ)部屋Aに3人、部屋Bに4人となる分け方は全部で何通りあるか。
 (ⅱ)どの部屋も1人以上になる分け方は全部で何通りあるか。
 (ⅲ)(ⅱ)のうち、部屋Aの人数が奇数である分け方は全部で何通りあるか。

(2)
4人を三つの部屋A,B,Cに分ける。
どの部屋も1人以上になる分け方は全部で何通りあるか。

(3)
大人4人、こども3人の計7人を三つの部屋A,B,Cに分ける。
 (ⅰ)どの部屋も大人が1人以上になる分け方は全部で何通りあるか。
 (ⅱ)(ⅱ)のうち、三つの部屋に子ども3人が1人ずつ入る分け方は全部で何通りあるか。
 (ⅲ)どの部屋も大人が1人以上で、かつ、各部屋とも2人以上になる分け方は全部で何通りあるか。
この動画を見る 
PAGE TOP preload imagepreload image