福田の数学〜千葉大学2022年理系第6問〜独立に動く空間上の2点の距離の最小 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2022年理系第6問〜独立に動く空間上の2点の距離の最小

問題文全文(内容文):
座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。
実数$t$を用いて$t\ \overrightarrow{ OA }+\overrightarrow{ OB }$と表される点全体をlとする。また、平面xy平面上
の$y=x^2$を満たす点全体からなる曲線をCとする。
(1)曲線$C$上の点$P(a,a^2,0)$を固定する。l上の点Qを、$\overrightarrow{ OA }$と$\overrightarrow{ PQ }$
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。
(2)曲線C上の点Rとl上の点Sのうち、$|\overrightarrow{ RS }|$を最小にする点Rと点Sの
組み合わせを全て求めよ。また、そのときの$|\overrightarrow{ RS }|$の値を求めよ。

2022千葉大学理系過去問
単元: #大学入試過去問(数学)#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。
実数$t$を用いて$t\ \overrightarrow{ OA }+\overrightarrow{ OB }$と表される点全体をlとする。また、平面xy平面上
の$y=x^2$を満たす点全体からなる曲線をCとする。
(1)曲線$C$上の点$P(a,a^2,0)$を固定する。l上の点Qを、$\overrightarrow{ OA }$と$\overrightarrow{ PQ }$
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。
(2)曲線C上の点Rとl上の点Sのうち、$|\overrightarrow{ RS }|$を最小にする点Rと点Sの
組み合わせを全て求めよ。また、そのときの$|\overrightarrow{ RS }|$の値を求めよ。

2022千葉大学理系過去問
投稿日:2022.05.18

<関連動画>

【数C】ベクトル:二点を通る直線・空間版

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,1,-1)とB(1,3,2)を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
この動画を見る 

【数C】ベクトル:直線と平面のなす角

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面と直線のなす角を求めます
この動画を見る 

福田の数学〜杏林大学2022年医学部第3問〜空間図形と球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の3点A(-1,0),B(1,0),Cを頂点とする三角形について考える。
点Cのy座標は正であり、原点をOとして、以下の問いに答えよ。
$(\textrm{a})\angle BAC \lt \angle ABC$を満たす場合、点Cは第$\boxed{ア}$象限に存在する。
$(\textrm{b})\angle ABC \lt \angle ACB$を満たす場合、点Cは$\boxed{イ}$の$\boxed{ウ}$に存在する。
$(\textrm{c})\angle ACB \lt \frac{\pi}{2}$を満たす場合、点Cは$\boxed{エ}$の$\boxed{オ}$に存在する。
$(\textrm{d})\angle BAC \leqq \angle ABC \leqq ACB \leqq \frac{\pi}{2}$を満たす点Cが存在する領域(境界を含む)
の面積は$\frac{\boxed{カ}}{\boxed{キク }}\pi-\frac{\sqrt{\boxed{ケ }}}{\boxed{コ }}$である。
$\boxed{イ},\boxed{エ}$の解答群
①点Aを中心とし点Bを通る円
②点Bを中心とし点Aを通る円
③線分ABを直径とする円
④離心率が0.5で2点O,Aを焦点とする楕円
⑤離心率が0.5で2点O,Bを焦点とする楕円
⑥離心率が0.5で2点A,Bを焦点とする楕円
⑦線分ABを一辺にもち、重心のy座標が正である正三角形
⑧線分ABを一辺にもち、重心のy座標が正である正方形

$\boxed{ウ},\boxed{オ}$の解答群
①内部 ②周上 ③外部 ④重心

(2)座標空間内の4点$A(-1,0,0),B(1,0,0),C(s,t,0),D$を原点とし、
$\angle BAC \lt \angle ABC \lt \angle ACB$
を満たす四面体を考える。$t \gt 0$であり、点Dのz座標は正であるとする。
$(\textrm{a})\angle ADC=\frac{\pi}{2}$を満たす場合、点Dは$\boxed{サ }$に存在する。
$(\textrm{b})\angle ADC=\angle BDC=\frac{\pi}{2}$を満たす場合、
点Dのx座標はsであり、点Dは$(s,\boxed{シ},0)$を中心とする
半径$\boxed{ス}$の円周上にある。
$(\textrm{c})$以下では$t=\frac{4}{3}$とする。設問(1)の結果から、点Cのx座標sは
$\boxed{セ} \lt s \lt -\boxed{ソ}+\frac{\boxed{タ}\sqrt{\boxed{チ}}}{\boxed{ツ}}$の範囲をとりうる。この範囲でsが変化
するとき、$\angle ADB=\angle ADC =\angle BDC=\frac{\pi}{2}$を満たす四面体ABCDの体積は
$s=\frac{\boxed{テ}}{\boxed{エ}}$のとき最大値$\frac{\boxed{ナ}}{\boxed{二ヌ }}$をとる。

2022杏林大学医学部過去問
この動画を見る 

【数C】ベクトル:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形OABCは、OB+3BC=2ABを満たしている。また、辺OAを2:1に内分する点を Dとし、a=OA、c=OCとする。
(1)OBをa,cを用いて表せ。
(2)2直線OB,CDの交点をP とする。OPwpa,cを用いて表せ。また、CP:PDを求めよ。
(3)OA=3、OB=√15,OC=4 とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、ON:NCを求めよ。また、3直線OB,OC,lで囲まれてできる三角形の面積を求 めよ。
この動画を見る 

【数C】空間ベクトル:軸/平面に関して対称な点の考え方

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
この動画を見る 
PAGE TOP