【数Ⅰ】【数と式】因数分解1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】因数分解1 ※問題文は概要欄

問題文全文(内容文):
因数分解せよ
問1 3次の因数分解①
(1) $8x^3+1$ (2) $64a^3-27$ (3) $27x^3+125y^3$
問2 たすき掛け
(1) $abx^2-(a^2+b^2 )x-ab$ (2) $abx^2+(a^2-b^2 )xy-aby^2$
問3 置き換え
(1) $(x^2-x)^2-14(x^2-x)+24$ (2) $(x^2+2x)(x^2+2x-2)-3$
問4 3次の因数分解②
(1) $x^3+3x^2 y+3xy^2+y^3$ (2) $8a^3-12a^2 b+6ab^2-b^3$
チャプター:

0:04 本編:3次の因数分解① 
4:42 たすき掛け 
8:32 置き換え 
12:36 3次の因数分解②

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
因数分解せよ
問1 3次の因数分解①
(1) $8x^3+1$ (2) $64a^3-27$ (3) $27x^3+125y^3$
問2 たすき掛け
(1) $abx^2-(a^2+b^2 )x-ab$ (2) $abx^2+(a^2-b^2 )xy-aby^2$
問3 置き換え
(1) $(x^2-x)^2-14(x^2-x)+24$ (2) $(x^2+2x)(x^2+2x-2)-3$
問4 3次の因数分解②
(1) $x^3+3x^2 y+3xy^2+y^3$ (2) $8a^3-12a^2 b+6ab^2-b^3$
投稿日:2024.11.05

<関連動画>

福田の数学〜慶應義塾大学看護医療学部2025第1問(1)〜分母の有理化

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)$\dfrac{1}{\sqrt2+\sqrt3+\sqrt5}$の分母を有理化すると

$\boxed{ア}$である。

〈追加問題〉

$\dfrac{1}{\sqrt2+\sqrt3+\sqrt5+\sqrt6}$の分母を有理化すると

$\Box$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

福田のおもしろ数学486〜1分チャレンジ!無理数の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x=\dfrac{\sqrt6+\sqrt2+\sqrt3+2}{\sqrt6-\sqrt2+\sqrt3-2},$

$y=\dfrac{\sqrt6+\sqrt2-\sqrt3-2}{\sqrt6-\sqrt2-\sqrt3+2}$

のとき$x^5+y^5$の値を求めて下さい。
    
この動画を見る 

学習院大 二次不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^2+2(a-5)x+a^2-11a+26$
$f(x)a$を満たす実数xが存在するようなaの範囲を求めよ.

学習院大過去問
この動画を見る 

福田の数学〜名古屋大学2024年文系第2問〜放物線と直線の関係

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $t$を0でない実数として、$x$の関数$y$=$-x^2$+$tx$+$t$ のグラフを$C$とする。
(1)$C$上において$y$座標が最大となる点Pの座標を求めよ。
(2)Pと点O(0,0)を通る直線を$l$とする。$l$と$C$がP以外の共有点Qを持つために$t$が満たすべき条件を求めよ。また、そのとき、点Qの座標を求めよ。
(3)$t$は(2)の条件を満たすとする。A(-1,-2)として、$X$=$\displaystyle\frac{1}{4}t^2$+$t$ とおくとき、AP$^2$-AQ$^2$を$X$で表せ。また、AP<AQとなるために$t$が満たすべき条件を求めよ。
この動画を見る 

【高校数学】  数Ⅰ-90  正弦定理と余弦定理③

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、次が成り立つとき、この三角形の最も大きい角の余弦の値を求めよう。

①$\displaystyle \frac{a}{13}=\displaystyle \frac{b}{8}=\displaystyle \frac{c}{7}$

②$\sin A:\sin B:\sin C=5:4:6$
この動画を見る 
PAGE TOP