高専数学 微積II #19(2) 3次近似式 - 質問解決D.B.(データベース)

高専数学 微積II #19(2) 3次近似式

問題文全文(内容文):
$f(x)=\sin 2x$の$x=0$における
3次近似式を求めよ.
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sin 2x$の$x=0$における
3次近似式を求めよ.
投稿日:2021.07.21

<関連動画>

高専数学 微積II #2(1)(2) 2次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x=0$における2次近似式を求め等式で表せ.

(1)$e^{3x}$
(2)$x\sqrt{1+x}$
この動画を見る 

高専数学 微積II #3 2次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt[3]{1-x}$の$x=0$における2次近似式を用いて,
$\sqrt[3]{0.8}$の近似値を小数第三位まで求めよ.
この動画を見る 

高専数学 微積II n次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$の$x=a$における$n$次近似式の等式は
$f(x)=\dfrac{f(a)}{O!}+\dfrac{f'(a)}{1!}(x-a)+・・・・・・$
$+\dfrac{f^{(n)}(a)}{n!} (x-a)^n+\xi_n (x)$
つまり
$f(x)=\displaystyle \sum_{k=0}^{n}\dfrac{f^{(k)}(a)}{k!} (x-a)^k+\xi (x)$
ただし
$\displaystyle \lim_{x\to a} \dfrac{\xi_n(x)}{(x-a)^n}=0$

これを解け.
この動画を見る 

タクミと貫太郎 微分を語ろう!「は(速さ)じ(時間)き(距離)「はじき」を使うとゲロが出る」

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
微分についての解説動画
は(速さ)じ(時間)き(距離)「はじき」
この動画を見る 

高専数学 微積II #6 n次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\log(2-x)$
の$x=0$における$n$次近似式の等式を求めよ.
この動画を見る 
PAGE TOP