【ケアレスミスをなくす3分間!】連立方程式:久留米大学附設高等学校~全部入試問題 - 質問解決D.B.(データベース)

【ケアレスミスをなくす3分間!】連立方程式:久留米大学附設高等学校~全部入試問題

問題文全文(内容文):
入試問題 久留米大学附設高等学校
【連立方程式】
aの値を求めよ。
$\begin{eqnarray}

\begin{cases}
8x-y=5 & \\
ax+5y=7 &
\end{cases}
\end{eqnarray}$
の解を$x=m,y=n$とするとき
$2m-n=1$が成り立つ
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#久留米大学附設高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 久留米大学附設高等学校
【連立方程式】
aの値を求めよ。
$\begin{eqnarray}

\begin{cases}
8x-y=5 & \\
ax+5y=7 &
\end{cases}
\end{eqnarray}$
の解を$x=m,y=n$とするとき
$2m-n=1$が成り立つ
投稿日:2021.12.30

<関連動画>

【中学数学】連立方程式の宿題Live【中2夏期講習①】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle (1)\,
\begin{cases}
4x-3y=-5\\
y=3x
\end{cases}
$
$\displaystyle (2)\,
\begin{cases}
-2x+3y=17\\
5x+9y=7
\end{cases}
$
$\displaystyle (3)\,
\begin{cases}
4x+y=3\\
7x+5y=-11
\end{cases}
$
$\displaystyle (4)\,
\begin{cases}
2x+3y=13\\
y=2x-1
\end{cases}
$
$\displaystyle (5)\,
\begin{cases}
9x-5y=34\\
6x+8y=17
\end{cases}
$
$\displaystyle (6)\,
\begin{cases}
4x+9y=37\\
7x+5y=11
\end{cases}
$
この動画を見る 

ちょっと変わった連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{1}{x+y} -x = 2 \\
\frac{1}{x+y} + y =4
\end{array}
\right.
\end{eqnarray}

2023中央大学付属高等学校
この動画を見る 

中2数学「かっこ・分数・小数の連立方程式」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~かっこ・分数・小数の連立方程式~

例題次の連立方程式を解きなさい。

(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-3y=1 \\
2x-11=3(x+y)
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-7=-3(y+2) \\
5x+6=2(y-5)
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

連立方程式の基本的な考え方

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
連立方程式の基本的な考え方について説明動画です
$\begin{cases}
x+2y=5 \\
5x+4y=13
\end{cases}$
この動画を見る 

【高校受験対策/数学】死守63

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63


下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照


右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。


1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。



ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。


下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る 
PAGE TOP