明治学院 令和4年度 2022 入試問題100題解説84問目! - 質問解決D.B.(データベース)

明治学院 令和4年度 2022 入試問題100題解説84問目!

問題文全文(内容文):
$0.65^2-2 \times 0.65 \times 0.25 + 0.25^2$

2022明治学院高等学校
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$0.65^2-2 \times 0.65 \times 0.25 + 0.25^2$

2022明治学院高等学校
投稿日:2022.03.07

<関連動画>

音楽と共に計算の基礎が頭から離れなくなる動画~全国入試問題解法 #shorts #数学 #高校受験

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の式を計算をせよ.
$\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\div \left(-\dfrac{2^2}{5}+\dfrac{1}{2}\right)$

和洋国府台女子高過去問
この動画を見る 

京都大学 5倍角の公式

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#三角関数#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式$f(n)$を求めよ.
(2)$\cos\dfrac{\pi}{10}\cos\dfrac{3\pi}{10}\cos\dfrac{7\pi}{10}\cos\dfrac{9\pi}{10}=\dfrac{5}{16}$を示せ.

1996京都大過去問
この動画を見る 

式の値 ラ・サール 2023

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x = \sqrt 7 + \sqrt 2 \\
y = \sqrt 7 - \sqrt 2
\end{array}
\right.
\end{eqnarray}

$x^4 - 6x^2y^2 +y^4 = ?$

2023ラ・サール学園
この動画を見る 

【高校受験対策】死守-3

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$6+4 \times \left(-\dfrac{1}{2}\right)$を計算せよ.

②$8a+b-(a-7b)$を計算せよ.

③$(\sqrt5 +\sqrt 3)(\sqrt 5-\sqrt3)$を計算せよ.

④1次方程式$9x+2=8(x+1)$を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=4 \\
6x+5y=-7
\end{array}
\right.
\end{eqnarray}$を解け.

⑥2次方程式$x^2-8x-9=0$を解け.

⑦関数$y=\dfrac{1}{3}x^2$について,
$x$の値を3から9まで増加するときの割合を求めよ.
この動画を見る 

高等学校入試予想問題:富山県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平行と合同#文字と式#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$6a^2b\times 2b\div 3ab$を計算せよ.
(2)$\sqrt{32}-\sqrt{18}+\sqrt2$を計算せよ.
(3)$x^2-5x-24=0$を解け.
(4)「$am$のリボンから.$bcm$切り取ると残りの長さは$2m$より短い.」
  不等式で表せ.
(5)$\angle x$は何度か.

$\boxed{2}$
(1)7番目の図形と16番目の図形の面積をそれぞれ求めよ.
(2)$n$を偶数とするとき,$n$番目の図形と$(2n+1)$番目の図形の面積の差が$331cm^2$である.$n$はいくつか.

$boxed{3}$
$A,B,C,D,E$は円$O$上の5点である.
$AC,BD$は直径であり,$AD\parallel BD$,交点は$F,G$である.

(1)$CE=?,OG=?$
(2)$FG=?$
(3)$\triangle ACF$と$\triangle ODA$の面積比は?



この動画を見る 
PAGE TOP