大学入試問題#13 自治医科大学(2021) 対数と整数問題 - 質問解決D.B.(データベース)

大学入試問題#13 自治医科大学(2021) 対数と整数問題

問題文全文(内容文):
$x,y:$自然数
$1+log_x(y-2)=4\ log_{x^2}2+3\ log_{x^3}(y+6)$が成り立つとき$|x-y|$の最小値を求めよ。

出典:2021年自治医科大学 入試問題
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y:$自然数
$1+log_x(y-2)=4\ log_{x^2}2+3\ log_{x^3}(y+6)$が成り立つとき$|x-y|$の最小値を求めよ。

出典:2021年自治医科大学 入試問題
投稿日:2021.09.20

<関連動画>

【高校数学】 数Ⅱ-135 対数関数①・グラフ編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、関数$y=\log_a x$を、$a$を①____とすると$x$の対数関数という。
ちなみに、$y=\log_a x$のグラフは、$y=a^x$のグラフと②____に関して対称。

◎次の関数のグラフを書こう。

③$y=\log_4 x$

④$y=\log_{\frac{1}{4}} x$
この動画を見る 

対数とみせて様々な知識を使う良問【数学 入試問題】【奈良県立医大】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$の関数$ f(x)=(\log_{10}\dfrac{x}{a})(\log_{10}\dfrac{x}{b})$の最小値が$-\dfrac{1}{4}$であるとき、$a,b$mの値を求めよ。
ただし、$a,b$は$ab=100,a>b$を満たす正の実数とする。

奈良県立医大過去問
この動画を見る 

大阪大 対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を自然数とし,$0\lt a \lt 1$とする.
$\log_2 6=m+\dfrac{1}{n+a}$

(1)$m,n$を求めよ.
(2)$a\gt \dfrac{2}{3}$を示せ.

2006大阪大過去問
この動画を見る 

対数の良問!何で2022を挟み込む?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$5.4<\log_4 2022<5.5$であることを示せ。
ただし,$0.301<\log_{10} 2<0.3011$であることは用いてよい。

京都大過去問
この動画を見る 

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 
PAGE TOP