【数B】【数列】漸化式6 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】漸化式6 ※問題文は概要欄

問題文全文(内容文):
平面上に$n$個の円があって、それらのどの2つも異なる2点で交わり、
またどの3つも1点で交わらないとする。
これらの$n$個の円が平面を$a_n$個の部分に分けるとき、$\{a_n\}$をnの式で表せ。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上に$n$個の円があって、それらのどの2つも異なる2点で交わり、
またどの3つも1点で交わらないとする。
これらの$n$個の円が平面を$a_n$個の部分に分けるとき、$\{a_n\}$をnの式で表せ。
投稿日:2025.04.14

<関連動画>

数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{n}{(n+1)!}$
この動画を見る 

ただの分数の和

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{3}$+$\frac{1}{6}$+$\frac{1}{10}$+$\frac{1}{15}$+$\frac{1}{21}$+$\frac{1}{28}$+$\cdots$+$\frac{□}{□}$=?
*分母の数は階差数列
この動画を見る 

福田の数学〜早稲田大学理工学部2025第3問〜完全順列と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$1$から$n$までの異なる自然数が$1$つずつ書かれた

$n$枚のカードが一列に並んでいる。

このとき、

どのカードも現在とは異なる位置に移動するよう

並べ替えてできる順列の総数を$a_n$で表し、

並べ方の総数$n!$に閉める$a_n$の割合を$p_n$で表す。

例えば、$a_1=0,p_1=0,a_2=1,p_2=\dfrac{1}{2},$

$a_3=2,p_3=\dfrac{1}{3}$である。

(1)$a_4$の値を求めよ。

(2)$n\geqq 3$のとき、$a_n$を$a_{n-1}$と

$a_{n-2}$を用いて表せ。

(3)$n\geqq 2$のとき、$p_n-p_{n-1}$を

$n$を用いて表せ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とするとき、
$2^{3n-2}+3^n$は5の倍数であることを
数学的帰納法によって証明せよ。

会津大過去問
この動画を見る 

階乗(❗️)に関する問題 常総学院

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(n+2)!}{n!} = 20$のときn=?

常総学院高等学校(改)
この動画を見る 
PAGE TOP