【中学数学】作図の演習~奈良県公立高校入試2019【高校受験】 - 質問解決D.B.(データベース)

【中学数学】作図の演習~奈良県公立高校入試2019【高校受験】

問題文全文(内容文):
動画内図の四角形ABCDは、並行四辺形である。
辺AD上に、ED=$\displaystyle \frac{1}{2}$DCとなる点Eを定規とコンパスを使って作図せよ。
なお、作図に使った線は消さずに残しておくこと。
チャプター:

00:00 はじまり

00:18 問題だよ

00:48 問題解説

02:40 まとめ

03:03 問題と答え

単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)#奈良県公立高等学校
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内図の四角形ABCDは、並行四辺形である。
辺AD上に、ED=$\displaystyle \frac{1}{2}$DCとなる点Eを定規とコンパスを使って作図せよ。
なお、作図に使った線は消さずに残しておくこと。
投稿日:2021.02.09

<関連動画>

計算のテクニック!以後お見知りおきを♪~全国入試問題解法 #Shorts #数学

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$2021\times2019-2018^2-2020\times2023+2019^2+2020$を計算せよ.
この動画を見る 

【高校受験対策/数学】関数56

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数56

Q.
図のように、円の中心$O$と点$P$が直線$l$上にあり、円の$O$半径は10$cm$、$OP$間の距離は20$cm$である。
点$O$が固定されたまま、点$P$は毎秒3$cm$の速さで直線$l$上を図の矢印の向きに進み、出発してから10秒後に停止する。
点$P$が出発してから$x$秒後の$OP$間の距離を$y cm$として次の問いに答えなさい。

①点$P$が出発してから点$O$と重なるまでの間について、$y$を$x$の式で表しなさい。

②点$P$が点$O$と重なってから停止するまでの間について、$y$を$x$の式で表しなさい。

③点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。

④点$P$が出来するのと同時に、毎秒1$cm$の一定の割合で円の半径が小さくなり始め、点$P$が停止するまでの間、円$O$は中心が固定されたまま徐々に小さくなっていくものとする。
点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。
この動画を見る 

直角三角形の中の正方形 A 解き方2通り 岡山白陵

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角形と四角形#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正方形の1辺の長さは?
*図は動画内参照

岡山白陵高等学校
この動画を見る 

気付けば一瞬です。  星稜

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x = ?$
*図は動画内参照

星稜高等学校
この動画を見る 

【高校受験対策】数学-死守11

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$(-2)\times (-3)+4$を計算しなさい.

②$\dfrac{2}{5}a+\dfrac{1}{3}a$を計算しなさい.

③$4(x+2y)-(6x+9y)$を計算しなさい.

④$5xy^2\times 7xy \div (-x)^2$を計算しなさい.

⑤$(\sqrt{2}+1)^2-\sqrt8$を計算しなさい.

⑥$x$についての2次方程式$x^2+ax-12=0$の解の一つが
$-2$であるとき,もう一つの解を求めなさい.

⑦右の図1のような半径$9cm$の半球があります.
この半球と等しい体積の円錐について考えます.
円錐の底面の半径が$9cm$であるとき,円錐の高さは何$cm$か求めなさい.

⑧右の図2は,ある学校の3年生50人の通学時間を調査し,
ヒストグラムに表したもので,平均値は$16.3$分でした.
下のアから工までの中から,
このヒストグラムからわかることについて正しく述べたものを1つ選び,
記号で答えなさい.

ア 通学時間の範囲は,16分である.

イ 通学時間の最頻値は,平均値よりも大きい.

ウ 通学時間の中央値が含まれる階級は,15分以上20分未満の階級である.

工 通学時間が20分以上25分未満の階級の相対度数は,$0.16$である.

図は動画内を参照
この動画を見る 
PAGE TOP