【確率の正体見たり「平方根」!】確率:鳥取県公立高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【確率の正体見たり「平方根」!】確率:鳥取県公立高等学校~全国入試問題解法

問題文全文(内容文):
大きいさいころと小さいさいころを同時に1回振ったとき,
大の出目は$a$であり,小の出目は$b$であった.
$\sqrt{a+b}$の値が整数となる確率を求めなさい.
※さいころは,どの目が出ることも同様に確からしい.

鳥取県高校過去問
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
大きいさいころと小さいさいころを同時に1回振ったとき,
大の出目は$a$であり,小の出目は$b$であった.
$\sqrt{a+b}$の値が整数となる確率を求めなさい.
※さいころは,どの目が出ることも同様に確からしい.

鳥取県高校過去問
投稿日:2022.09.21

<関連動画>

【数学】中2-50 鋭角三角形と鈍角三角形

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
0°から90°の角を①____、90°の角を②____、90°から180°の角を③____という。
①____三角形は『④____つの内角が⑤____である三角形』、②____三角形は『⑥__つの内角が⑦__である三角形』、③____三角形は『⑧__つの内角が⑨__である三角形』!!

◎2つの内角が次の大きさのとき、どの三角形になる?
⑩32°、78°
⑪15°、123°
⑫35°、24°
⑬51°、39°

この動画を見る 

【3分で理解!5分で発展的学習!】二次方程式:山口県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
差が1である大小2つの正の数がある.
これらの積が3であるとき,2つの数のうち,大きい方の数を求めなさい.

山口県高校過去問
この動画を見る 

気付けば一瞬!!だった。正方形 (別解)

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 数学を数楽に
問題文全文(内容文):
動画の四角形において、その中にある$\triangle \rm{CDE}$の面積を求めよ。
この動画を見る 

【高校受験対策】数学-死守21

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
この動画を見る 

連立方程式 法政ニ 2022年入試問題解説51問目

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式
$
\begin{eqnarray}
\left\{
\begin{array}{l}
37x - 53y = 2 \\
17x + 19y = 1
\end{array}
\right.
\end{eqnarray}
$
$x:y=?$

2022法政大学第二高等学校
この動画を見る 
PAGE TOP