福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小

問題文全文(内容文):
(1)mを実数とする。xについての2次方程式$x^2-(m+3)x+m^2-9=0$の
二つの解を$α,β$とする。$α,β$が実数であるための必要十分条件は$- \boxed{ア} \leqq m \leqq \boxed{イ}$である。
mが$- \boxed{ア} \leqq m \leqq \boxed{イ}$の範囲を動くときの
$α^3+β^3$の最小値は$\boxed{ウ}$、最大値は$\boxed{エオカ}$である。
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#解と判別式・解と係数の関係#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)mを実数とする。xについての2次方程式$x^2-(m+3)x+m^2-9=0$の
二つの解を$α,β$とする。$α,β$が実数であるための必要十分条件は$- \boxed{ア} \leqq m \leqq \boxed{イ}$である。
mが$- \boxed{ア} \leqq m \leqq \boxed{イ}$の範囲を動くときの
$α^3+β^3$の最小値は$\boxed{ウ}$、最大値は$\boxed{エオカ}$である。
投稿日:2022.11.11

<関連動画>

【高校数学】 数Ⅱ-124 指数の拡張②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x^{n}=a$となる数$x$を、$a$の$n$乗根といい、2乗根、3乗根…をまとめて①____という。

◎次の値を求めよう。

②$^3\sqrt{ 8 }$

③$^3\sqrt{ 81 }$

④$\sqrt{ 25 }$

⑤$^4\sqrt{ 2 }$ $^4\sqrt{ 8 }$

⑥$\displaystyle \frac{^3\sqrt{ 54 }}{^3\sqrt{ 2 }}$

⑦$\sqrt{ ^3\sqrt{ 64 } }$

⑧$^8\sqrt{ 81 }$
この動画を見る 

【数Ⅱ】【指数関数と対数関数】指数計算3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ
(1)$y=2^{x+1}$
(2)$y=(\frac{1}{5})^{x-1}$
(3)$y=4・2^x$
(4)$y=3^x-1$

次の数の大小を不等号を用いて表せ
(1)$2^{\frac{1}{2}}$ $3^{\frac{1}{3}}$ $7^{\frac{1}{6}}$
(2)$2^{30}$ $3^{20}$ $10^{10}$

次の方程式,不等式を解け
(1)$4^x+2^{x+1}-24=0$
(2)$10^{2x}+10^x=2$
(3)$9^{x+1}-28・3^x+3=0$
(4)$16^x-3・4^x-4≧0$
(5)${\frac{1}{9}}^x-{\frac{1}{3}}^x-6<0$
(6)${\frac{1}{4}}^{x-1}-9・{\frac{1}{2}}^x+2>0$

次の関数の最大値,最小値があれば,それを求めよまた,そのときのxの値を求めよ
(1)$y=2^{2x}-4・2^x+1$
(2)$y=-4^x+2^x+2$$(-1≦x≦2)$
この動画を見る 

#44 数検1級1次 過去問 3乗根

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ 10+6\sqrt{ 3 } }$を$a+b\sqrt{ 3 }$で表せ。
ただし$a,b$は有理数とする。
この動画を見る 

連立指数方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式の計算(整式・展開・因数分解)#指数関数と対数関数#指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3^{\frac{x}{2}}-2^y=7 \\
3^x-4^y=77
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

指数方程式 解は見えちゃうんだよね

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
指数方程式に関して解説していきます。
この動画を見る 
PAGE TOP