【数B】空間ベクトル:軸/平面に関して対称な点の考え方 - 質問解決D.B.(データベース)

【数B】空間ベクトル:軸/平面に関して対称な点の考え方

問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題解説(1)
0:54 問題解説(2)+○○対称の考え方
2:37 今回のポイント:○○対称の考え方
2:47 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
投稿日:2020.10.21

<関連動画>

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
$\overrightarrow{ a }=(a_1,a_2,a_3)$と$\overrightarrow{ b }=(b_1,b_2,b_3)$が、
次の$(\textrm{i}),(\textrm{ii}),(\textrm{iii})$のいずれかを
満たしているとき$\overrightarrow{ a }$は$\overrightarrow{ b }$より前であるといい、
$\overrightarrow{ a }≺ \overrightarrow{ b }$と表す。
$(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1$かつ
$a_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1$かつ$a_2=b_2$かつ$a_3 \lt b_3$

空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}$の要素を
前から順に$\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }$とする。
ここで、mはPに含まれる要素の総数を表す。
つまり、$P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}$であり、
$\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)$
を満たしている。次の各設問に答えよ。
(1)$\overrightarrow{ p_{67} }$を求めよ。
(2)集合$\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。

2022早稲田大学商学部過去問
この動画を見る 

福田の数学〜空間の位置ベクトルの考え方〜明治大学2023年理工学部第1問(4)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (4)四面体OABCにおいて、辺OAを1:3に内分する点をD、辺ABを1:2に内分する点をE、辺OCを1:2に内分する点をFとすると、
$\overrightarrow{DE}$=$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハヒ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\overrightarrow{OB}$, $\overrightarrow{DF}$=$-\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}\overrightarrow{OC}$
である。さらに、3点D,E,Fを通る平面と辺BCの交点をGとすると、
$\overrightarrow{DF}$=$\frac{\boxed{\ \ メ\ \ }}{\boxed{\ \ モ\ \ }}\overrightarrow{DE}$+$\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }}\overrightarrow{DF}$
である。したがって、$\overrightarrow{BG}$=$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}\overrightarrow{BC}$ となる。
この動画を見る 

【数C】【空間ベクトル】点A(3,-4,2)に関して、点P(1,2,3)と対称な点Qの座標を求めよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
点A(3,-4,2)に関して、点P(1,2,3)と対称な点Qの座標を求めよ
この動画を見る 

【数C】【空間ベクトル】四面体ABCDに対して,等式AP+3BP+4CP+8DP=0を満たす点Pはどのような位置にあるか。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに対して,等式$\overrightarrow{ AP }+3\overrightarrow{ BP }+4\overrightarrow{ CP }+8\overrightarrow{ DP }=\overrightarrow{ 0 }$を満たす点Pはどのような位置にあるか。
この動画を見る 

【数C】【空間ベクトル】△ABCについて,cosAの値と面積Sを求めよ(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の3点を頂点とする△ABCについて,cosAの値と△ABCの面積Sを求めよ。
(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)
(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)
この動画を見る 
PAGE TOP