立教大 立体図形・関数最大値 信州大 指数方程式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

立教大 立体図形・関数最大値 信州大 指数方程式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照

信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照

信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け
投稿日:2018.06.07

<関連動画>

大学入試問題#512「受験生の心は折れる」 浜松医科大学(2015) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{(3n^2+1^2)(3n^2+2^2)・・・(3n^2+n^2)}{(n^2+1^2)(n^2+2^2)・・・(n^2+n^2)})^{\frac{1}{n}}$

出典:2015年浜松医科大学 入試問題
この動画を見る 

大学入試問題#681「綺麗な良問」  東京理科大学(2016) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\sin\ 4x}{\sqrt{ 1+\sin^2x }} dx$

出典:2016年東京理科大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第2問〜玉を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 赤玉と黒玉が入っている袋の中から無作為に玉を1つ取り出し、取り出した玉を袋に戻した上で、取り出した玉と同じ色の玉をもう1つ袋に入れる操作を繰り返す。以下の問いに答えよ。
(1)初めに袋の中に赤玉が1個、黒玉が1個入っているとする。n回の操作を行ったとき、赤玉をちょうどk回取り出す確率を$P_n(k)$(k=0,1,...,n)とする。
$P_1(k)$と$P_2(k)$を求め、さらに$P_n(k)$を求めよ。
(2)初めに袋の中に赤玉がr個、黒玉がb個(r≧1, b≧1)入っているとする。n回の操作を行ったとき、k回目に赤玉が、それ以外ではすべて黒玉が取り出される確率$Q_n(k)$(k=1,2,..., n)とする。$Q_n(k)$はkによらないことを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(6)〜2つのベクトルの両方に垂直なベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(6)空間のベクトル$\vec{ p}=(x,y,z)$は

$\vec{b}=(0,3,2)$の両方に垂直であり、

$\vec{\vert p \vert}=7$かつ$z \gt 0$を

満たしている。

このとき、$\vec{p}=(\boxed{ク},\boxed{ケ},\boxed{コ})$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

大学入試問題#632「微分して積分するだけ」 埼玉大学(2017) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$f(x)=x^2e^{-x}+\displaystyle \int_{0}^{x} e^{t-x}f(t)dt$を満たす$f(x)$を求めよ。

出典:2017年埼玉大学 入試問題
この動画を見る 
PAGE TOP