立教大 立体図形・関数最大値 信州大 指数方程式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

立教大 立体図形・関数最大値 信州大 指数方程式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照

信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照

信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け
投稿日:2018.06.07

<関連動画>

福田の数学〜京都大学2023年理系第1問(2)〜整式の割り算と余り

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 問2 整式$x^{2023}$-1 を整式$x^4$+$x^3$+$x^2$+$x$+1 で割った時の余りを求めよ。

2023京都大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第6問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 関数F(x)=\frac{1}{2}+\int_0^{x+1}(|t-1|-1)dtに対し、\\
y=F(x)で定まる曲線をCとする。\\
(1)F(x)を求めよ。\\
(2)Cとx軸の共有点のうち、x座標が最小の点をP、最大の点をQ\\
とする。PにおけるCの接線をlとするとき、Cとlで囲まれた図形の面積Sを求めよ。\\
また、Qを通る直線mがSを2等分するとき、lとmの交点Rの座標を求めよ。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

【数Ⅲ】東大の基礎問題!絶対に落としてはいけない!【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数

$f(x)=\dfrac{x}{sin x}+cos x$  ($ 0<x<\pi $)
の増減表を作り,$ x→+0,x→\pi-0$のときの極限を調べよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第6問〜新型ウィルス感染拡大による大学の授業形態の決定

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ ある大学で来学期の授業の形式をどうするかを検討している。\hspace{131pt}\\
授業形式の選択としては、通常の対面形式(授業形式uと呼ぶことにする)、\\
\textrm{Web}上で試料を閲覧できたり課題を行ったりできるオンデマンド形式(授業形式vと呼ぶことにする)\\
\textrm{Web}会議システムを使用するオンライン配信形式(授業形式wと呼ぶことにする)\\
の3つがあるとする。\\
また、来学期の新型ウイルスの感染状況については、\\
急激に拡大している状況(感染状況xと呼ぶことにする)、\\
ピークは過ぎたが十分な収束にはいたっていない状況(感染状況yとよぶことにする)、\\
ある程度収束した状況(感染状況zとよぶことにする)の3つが考えられるとする。\\
いま、この大学は授業形式と新型ウイルスの感染状況の組み合わせについて、\\
次の表(※動画参照)に示す評論値(値が高いほど評価も高い)を定めているものとする。\\
\\
来学期の感染状況について、感染状況xである確率をp_x、\\
感染状況yである確率をp_y、感染状況zである確率をp_zとすると、\\
xyz空間において点p=(p_x,p_y,p_z)は(1,0,0),(0,1,0),(0,0,1)を頂点とする正三角形上の\\
点としてあらわすことができる。この正三角形上において、点pから各辺に垂線を下ろしたとき、\\
(1,0,0)と向かいの辺に下ろした垂線の長さをl_x、(0,1,0)と向かいの辺に下した垂線の長さをl_y、\\
(0,0,1)と向かいの辺に下した垂線の長さをl_zとする。\\
(1)このときp_x=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\ l_x,\ \ \ \,p_y=\frac{\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\ l_y,\ \ \ \ p_z=\frac{\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サシ\ \ }}\ l_z\ \ \ \ が成り立つ。\\
\\
いま、正三角形上の点p=(p_x,p_y,p_z)に対して、上記の評価の期待値を最大にする\\
授業形式のラベルをつけることにする。ただし、pによっては評価値を最大にする選択が\\
複数ある場合もあり、その場合にはpに複数のラベルをつけることにする。\\
さらに、原点と(0,1,0),(0,0,1)を原点とするyz平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にxという感染状況のラベルをつけ、\\
原点と(1,0,0),(0,0,1)を原点とするxz平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にyという感染状況のラベルをつけ、\\
原点と(1,0,0),(0,1,0)を原点とするxy平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にzという感染状況のラベルをつけることにする。\\
\\
すると、正三角形と3つの直角二等辺三角形からなる四面体の面上(頂点、辺も含む)\\
のそれぞれの点には、1つもしくは複数のラベルがつくことになる。例えば、\\
原点には\left\{x,y,z\right\}の3つのラベルがつく。\\
(2)このとき、正三角形の面上(頂点、辺も含む)の各点pにつけられるラベルの\\
可能性を列挙すると、以下の通りとなる。ただし、複数のラベルがつけられる場合には、\\
それぞれの中括弧内では、アルファベット順に書くものとする。空欄に入る\\
ラベルについて下記の選択肢から選びなさい。\\
単一のラベルがつく場合:\left\{\boxed{\ \ ス\ \ }\right\},\left\{w\right\}\\
2つのラベルがつく場合:\left\{\boxed{\ \ セ\ \ },w\right\},\left\{u,\boxed{\ \ ソ\ \ }\right\},\\
\left\{\boxed{\ \ タ\ \ },y\right\},\left\{w,y\right\},\left\{\boxed{\ \ チ\ \ },z\right\}\\
3つのラベルがつく場合:\left\{\boxed{\ \ ツ\ \ },w,\boxed{\ \ テ\ \ }\right\},\left\{\boxed{\ \ ト\ \ },\boxed{\ \ ナ\ \ },\boxed{\ \ ニ\ \ }\right\}\\
4つのラベルがつく場合:\left\{u,\boxed{\ \ ヌ\ \ },\boxed{\ \ ネ\ \ },\boxed{\ \ ノ\ \ }\right\},\left\{\boxed{\ \ ハ\ \ },\boxed{\ \ ヒ\ \ },\boxed{\ \ フ\ \ },\boxed{\ \ ヘ\ \ }\right\}\\
\\
\\
選択肢:\ \ \ (1)\ \ \ u\ \ \ (2)\ \ \ v\ \ \ (3)\ \ \ w\ \ \ (4)\ \ \ x\ \ \ (5)\ \ \ y\ \ \ (6)\ \ \ z \ \ \
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

早稲田大(商)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2+x+2)^{99}$
$=a_0+a_1x+a_2x^2+a_3x^3+…+a_{198}x^{198}$
$x^2+x+1=0$の1つの解を$\omega$とする

(2)
$f(\omega)$の値を求めよ

(2)
$S=\displaystyle \sum_{k=0}^{66} a_{3k}=a_0+a_3+a_6+…+a_{198}$

出典:1999年早稲田大学 商学部 過去問
この動画を見る 
PAGE TOP