【数B】【数列】数学的帰納法3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】数学的帰納法3 ※問題文は概要欄

問題文全文(内容文):
(1) $n$は自然数とする。
$5^{n+1}+6^{2n-1}$は31で割り切れることを、
数学的帰納法によって証明せよ。
(2) $n$は2以上の自然数とする。
$2^{3n}-7n-1$は49で割り切れることを、
数学的帰納法によって証明せよ。
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $n$は自然数とする。
$5^{n+1}+6^{2n-1}$は31で割り切れることを、
数学的帰納法によって証明せよ。
(2) $n$は2以上の自然数とする。
$2^{3n}-7n-1$は49で割り切れることを、
数学的帰納法によって証明せよ。
投稿日:2025.04.26

<関連動画>

漸化式・対数の利用の融合問題 福井大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=1,a_{n+1}=\dfrac{a_n}{a_n+3},a_{11}$は小数点以下0でない数が初めて表れるのは小数第何位?

福井大過去問
この動画を見る 

大学入試問題#61 大阪工業大学(2021) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪工業大学
指導講師: ますただ
問題文全文(内容文):
$S_n=\displaystyle \frac{n+3}{2}a_n-6$を満たすとき
一般項$a_n$を求めよ。

出典:2021年大阪工業大学 入試問題
この動画を見る 

【高校数学】等差数列の和の例題演習・基礎 3-4.5【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の等差数列の和を求めよ。
(1)初項100,末項30,項数7
(2)初項50,公差-4,項数n
(3)100,105,110,…,200
この動画を見る 

【数学B/数列】数列の和Snから一般項anを求める

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
初項から第$n$項までの和$S_n$が次の式で表される数列{$a_n$}の一般項を求めよ。
(1)
$S_n=n^2+4n$

(2)
$S_n=2^{n+1}-4n+1$
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第2問〜玉を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 赤玉と黒玉が入っている袋の中から無作為に玉を1つ取り出し、取り出した玉を袋に戻した上で、取り出した玉と同じ色の玉をもう1つ袋に入れる操作を繰り返す。以下の問いに答えよ。
(1)初めに袋の中に赤玉が1個、黒玉が1個入っているとする。n回の操作を行ったとき、赤玉をちょうどk回取り出す確率を$P_n(k)$(k=0,1,...,n)とする。
$P_1(k)$と$P_2(k)$を求め、さらに$P_n(k)$を求めよ。
(2)初めに袋の中に赤玉がr個、黒玉がb個(r≧1, b≧1)入っているとする。n回の操作を行ったとき、k回目に赤玉が、それ以外ではすべて黒玉が取り出される確率$Q_n(k)$(k=1,2,..., n)とする。$Q_n(k)$はkによらないことを示せ。

2023早稲田大学理工学部過去問
この動画を見る 
PAGE TOP