大学入試問題#793「教科書の章末問題!?」 #室蘭工業大学(2018) #数列 - 質問解決D.B.(データベース)

大学入試問題#793「教科書の章末問題!?」 #室蘭工業大学(2018) #数列

問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}, a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$を満たす数列$\{a_n\}$を求めよ。

出典:2018年室蘭工業大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#室蘭工業大学
指導講師: ますただ
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}, a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$を満たす数列$\{a_n\}$を求めよ。

出典:2018年室蘭工業大学 入試問題
投稿日:2024.04.15

<関連動画>

福田の数学〜北里大学2021年医学部第2問〜条件が複雑な重複順列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $n$ を正の整数とし、1,2,3,4,5,6の6個の数字から同じ数字を繰り返し用いることを許して$n$桁の整数をつくる。このような整数のうち、1が奇数個用いられるものの総数を$A_n$、それ以外のものの総数を$B_n$とする。
また、1か6がいずれも奇数個用いられるものの総数を$C_n$とする。次の問いに答えよ。
(1)$A_4$を求めよ。
(2)正の整数$n$に対して、$A_{n+1}$を$A_n$と$B_n$を用いて表せ。
(3)正の整数$n$に対して、$A_n$と$B_n$を求めよ。
(4)$p$を定数とする。$X_1=p$,$X_{n+1}=2X_n+6^n$($n$=1,2,3,...)で定められる
数列を$\left\{X_n\right\}$とする。正の整数$n$に対して、$X_n$を$n$と$p$を用いて表せ。
(5)正の整数$n$に対して、$C_n$を求めよ。

2021北里大学医学部過去問
この動画を見る 

因数分解せよ  北京大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x \sqrt x - 2x + 1$

北京大学
この動画を見る 

大学入試問題#575「こんな感じかな?で解けるはず」 大阪教育大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} e^{3x}\sin^2\ x\ \sin(x+\displaystyle \frac{\pi}{4})\ dx$

出典:2014年大阪教育大学 入試問題
この動画を見る 

大学入試問題#462「~らん~さんからの紹介」 横国・信州大学 類題 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{e^x+e^{-x}}{e^{(\sin^5x+1)}+e} dx$
この動画を見る 

微分でも解けるけど・・・【数学 入試問題】【慶應義塾大学 改題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$ f(x)=x(x-1)(x-3)(x-4)$の$0≦x≦4$の範囲における最大値と最小値、およびそれらの値を取るときの$x$の値を求めよ。

慶應義塾大改題過去問
この動画を見る 
PAGE TOP