問題文全文(内容文):
$x\;$を有理数とする。$\displaystyle\frac{35}{12}x\;$と$\displaystyle\frac{21}{20}x\;$の値がともに自然数となる最も小さい$x\;$の値を求めなさい。
$x\;$を有理数とする。$\displaystyle\frac{35}{12}x\;$と$\displaystyle\frac{21}{20}x\;$の値がともに自然数となる最も小さい$x\;$の値を求めなさい。
単元:
#数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#文字と式#高校入試過去問(数学)#大阪府高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x\;$を有理数とする。$\displaystyle\frac{35}{12}x\;$と$\displaystyle\frac{21}{20}x\;$の値がともに自然数となる最も小さい$x\;$の値を求めなさい。
$x\;$を有理数とする。$\displaystyle\frac{35}{12}x\;$と$\displaystyle\frac{21}{20}x\;$の値がともに自然数となる最も小さい$x\;$の値を求めなさい。
投稿日:2024.09.02





