【中学数学】等式の変形~誰でもできるようになります~ 1-5【中2数学】 - 質問解決D.B.(データベース)

【中学数学】等式の変形~誰でもできるようになります~ 1-5【中2数学】

問題文全文(内容文):
(1) $3x-5y=11(x)$

(2) $2ab+5b=3c(b)$

(3) $\displaystyle \frac{3ax-b}{5} =7(b)$

(4) $V=\displaystyle \frac{3}{4} tx^2(t)$
チャプター:

00:00 はじまり

00:38 問題解説前半

02:30 問題解説後半

04:13 まとめ

04:41 問題と答え

単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $3x-5y=11(x)$

(2) $2ab+5b=3c(b)$

(3) $\displaystyle \frac{3ax-b}{5} =7(b)$

(4) $V=\displaystyle \frac{3}{4} tx^2(t)$
投稿日:2021.05.03

<関連動画>

分数式の計算

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a-b}{ab}$+$\frac{b-c}{bc}$
この動画を見る 

【数学】中2-6 式の値

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
整理してから計算すると楽になることが多いよ!
①$x=-2,y=3$のとき、$4(x+2y)-3(2x-y)$の値は?
②$x=-1.2,y=0.5$のとき、$-5(3x-y)-(5x-y)$の値は?
③$x=\displaystyle \frac{1}{4},y=-\displaystyle \frac{2}{3}$のとき、$2(x-3y)-3(2x-y)$の値は?
④$A=a+3b,B=-2a+b$のとき、$5A-2B$は?
⑤$x=3,y=-2$のとき、$6xy^2 \div (-8xy) \times 4x$の値は?
この動画を見る 

みんなの説明も聞きたいです...

アイキャッチ画像
単元: #中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「くくる」についての分かりやすい説明
この動画を見る 

【高校受験対策】数学-死守17

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$6-2\times (-5)$を計算しなさい.

②$\dfrac{1}{3}-\dfrac{7}{9}$を計算しなさい.

③$2(a+3b)-(a-4b)$を計算しなさい.

④$\sqrt8+\dfrac{6}{\sqrt2}$を計算しなさい.

⑤2次方程式$x^2+2x-15=0$を計算しなさい.

⑥赤,白,青の棒が各1本ずつ箱の中に入っている.
この3本の棒をよく混ぜて1本取り出し,色を確認してからもとにもどします.
このことを2回行うとき,確認した色が2回とも赤か,
2回とも白になる確率を求めなさい.

⑦相似な2つの立体$P,Q$があり,その表面積の比は$4:9$です.
立体$P$の体積が$8cm^3$のとき,立体$Q$の体積を求めなさい.

⑧図1のように,関数$y = ax^2$グラフ上に,$x$座標が-1となる点をとります.
また,$x$軸上の,座標が$ (1,0)$となる点を$B$とします.
直線$AB$の切片が2のとき,$a$の値を求めなさい.

⑨図2のように,直線$\ell$,2点$A,B$があります.
直線$\ell$上にあって,2点$A,B$から等しい距離にある点$P$を,
作図によって求めなさい.
なお,作図に用いた線は消さずに残しなさい.

図は動画内参照
この動画を見る 

【高校受験対策/数学】死守-78

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守78

①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。

②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。

③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。

ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$

④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
この動画を見る 
PAGE TOP