【中学数学】等式の変形~誰でもできるようになります~ 1-5【中2数学】 - 質問解決D.B.(データベース)

【中学数学】等式の変形~誰でもできるようになります~ 1-5【中2数学】

問題文全文(内容文):
(1) $3x-5y=11(x)$

(2) $2ab+5b=3c(b)$

(3) $\displaystyle \frac{3ax-b}{5} =7(b)$

(4) $V=\displaystyle \frac{3}{4} tx^2(t)$
チャプター:

00:00 はじまり

00:38 問題解説前半

02:30 問題解説後半

04:13 まとめ

04:41 問題と答え

単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $3x-5y=11(x)$

(2) $2ab+5b=3c(b)$

(3) $\displaystyle \frac{3ax-b}{5} =7(b)$

(4) $V=\displaystyle \frac{3}{4} tx^2(t)$
投稿日:2021.05.03

<関連動画>

【高校受験対策/数学】死守-97

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守97

①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。

④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$

⑤二次方程式$3x^2+7x+1=0$を解きなさい。

⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。

⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。

⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
この動画を見る 

【テスト対策・中1】2章-3

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2(3x-2)-(-5x-7)$

②$-5x+\dfrac{2}{3}(9x+6y)$

③$(-12)\times \dfrac{x-3}{2}$

④$x+\dfrac{1}{4}(x-20)$

⑤$\dfrac{4x-y}{3}-\dfrac{3x-2y}{2}$

⑥$x-3y-\dfrac{2x+5}{3}$
この動画を見る 

分母の有理化のタイミング 桃山学院

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{41}{\sqrt{42}}-(\frac{\sqrt{6}}{\sqrt{7}}-\frac{\sqrt{7}}{\sqrt{6}})$
この動画を見る 

【中学数学】式の値~問題演習で解き方を教えます~ 1-2【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $a=5,~b=-8$のとき、$4(2a-7b)-5(a-5b)$を求めよ
(2) $a=6,~b=-7$のとき、$5a^3b^2\div 15a^2b^4\times 2ab^3$を求めよ
(3) $x=\frac{3}{2},~y=-\frac{2}{17}$のとき、$(8x+3y)-2(3x-7y+1)$を求めよ
この動画を見る 

中2数学「同類項・式の加法と減法」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の計算をしなさい.

(1)$4a-3b-a+5b$
(2)$x^2-3x+2x^2+5x$
(3)$3ab-2a-ab+a$
(4)$\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{y}{4}-\dfrac{x}{9}$

例2
(1)$(4x-y)+(x+5y)$
(2)$(3x+7y)-(2x-5y)$
(3)$(2x^2+5x-1)-(3-4x^2+x)$
(4)
$\begin{array}{r}
3x-2y \\[0.5pt]
\underline{+\phantom{0}2x+5y}\\[-3pt]
\\[-3pt]
\end{array}$

(5)
$\begin{array}{r}
-2x+5y-4 \\[0.5pt]
\underline{-\phantom{0}-5x-3y+6}\\[-3pt]
\\[-3pt]
\end{array}$
この動画を見る 
PAGE TOP