【中学数学】等式の変形~誰でもできるようになります~ 1-5【中2数学】 - 質問解決D.B.(データベース)

【中学数学】等式の変形~誰でもできるようになります~ 1-5【中2数学】

問題文全文(内容文):
(1) $3x-5y=11(x)$

(2) $2ab+5b=3c(b)$

(3) $\displaystyle \frac{3ax-b}{5} =7(b)$

(4) $V=\displaystyle \frac{3}{4} tx^2(t)$
チャプター:

00:00 はじまり

00:38 問題解説前半

02:30 問題解説後半

04:13 まとめ

04:41 問題と答え

単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $3x-5y=11(x)$

(2) $2ab+5b=3c(b)$

(3) $\displaystyle \frac{3ax-b}{5} =7(b)$

(4) $V=\displaystyle \frac{3}{4} tx^2(t)$
投稿日:2021.05.03

<関連動画>

【高校受験対策/数学】死守-95

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2-(-5)-9$を計算せよ。
②$\frac{3x-y}{4}-\frac{x+2y}{3}$を計算せよ。
③$a^2b×(-3b)÷6ab^2$を計算せよ。
④$\frac{12}{\sqrt2}-\sqrt32$を計算せよ 。

⑤50本の鉛筆を、7人の生徒に1人$a$本ずつ配ると、$b$本余った。
このとき、$b$を$a$の式で表せ。

⑥2次方程式$(x-4)(x+2)=3x-2$を解け。

⑦$a$は正の数とする。
次の文字式のうち、式の値が$a$の値よりも小さくなる文字式はどれか。
次のアーエからすべて選び、その記号で書け。

ア $a+(-\frac{1}{2})$
イ $a-(-\frac{1}{2})$
ウ $a×(-\frac{1}{2})$
エ $a÷(-\frac{1}{2})$

⑧関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq -1$のとき、
$y$の変域は$-3 \leqq y \leqq 12$である。このときの$a$の値を求めよ。

⑨右の図のように、2つの半直線$AB,AC$があり、半直線$AB$上に点$D$をとる。
2つの半直線$AB,AC$の両方に接する円のうち、 点$D$で半直線$AB$と接する円の中心$P$を定規・コンパスを使い作図によって求めよ。
この動画を見る 

中2数学「式による説明①(偶数と奇数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第10回式による説明①~(偶数と奇数)

例1
偶数と奇数の和は奇数になることを説明しなさい。

例2
奇数と奇数の和は偶数になることを説明しなさい。

例3
偶数と奇数の積は偶数になることを説明しなさい。
この動画を見る 

気付けば一瞬!!式の値

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{b} + \frac{b}{a} = 2$のとき
$a-b=?$
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 

2023灘中最初の一問 計算

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師: 数学を数楽に
問題文全文(内容文):
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}$
= $1 \div (81-?)$

2023灘中学校
この動画を見る 
PAGE TOP