問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係(2)\\
\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)のとき\\
\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,\\
\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}の値を求めよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係(2)\\
\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)のとき\\
\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,\\
\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}の値を求めよ。
\end{eqnarray}
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係(2)\\
\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)のとき\\
\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,\\
\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}の値を求めよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係(2)\\
\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)のとき\\
\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,\\
\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}の値を求めよ。
\end{eqnarray}
投稿日:2021.07.31