大学入試問題#685「一言・・・むずい」 早稲田商学部(2018) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#685「一言・・・むずい」 早稲田商学部(2018) #整数問題

問題文全文(内容文):
次の条件を満たす正の整数の組$(a,b,n)$をすべて求めよ。
$n \geq 2$で、$b$は素数
$a^2=b^n+225$

出典:2018年早稲田大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の条件を満たす正の整数の組$(a,b,n)$をすべて求めよ。
$n \geq 2$で、$b$は素数
$a^2=b^n+225$

出典:2018年早稲田大学商学部 入試問題
投稿日:2023.12.25

<関連動画>

大学入試問題#283 早稲田大学(2013) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$5 \leqq p$:素数
$p^3$を$p-4$で割った余りが4のとき$p$の値を求めよ。

出典:2013年早稲田大学 入試問題
この動画を見る 

【数学】京大数学の傾向と対策&採点の仕方・問題用紙の使い方~3完半するために何をどうするか?~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #その他#勉強法#京都大学#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
京大数学の傾向と対策&採点の仕方・問題用紙の使い方
「京大の文系数学」について分析をしています。
この動画を見る 

大学入試問題#153 東京医科大学(2017) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
この動画を見る 

大学入試問題#754「スッキリと解きたい」 早稲田大学人間科学部(2022) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m \gt 3$である自然数$m$に対して、
等式$ma+\displaystyle \frac{1}{m}b=ab-1$
を満たす整数$a,b$の組をすべて求めよ。

出典:2022年早稲田大学人間科学部 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 数列$\left\{a_n\right\}$に対して、
$S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)$
とおく。$\left\{a_n\right\}$は、$a_2=1,a_6=2$および
(*)$S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)$
を満たすとする。

(1)$a_1=-\boxed{\ \ ア\ \ }$である。(*)で$n=4,5$とすると、$a_3+a_4$と$a_5$の関係が2通り定まり、
$a_5=\boxed{\ \ イ\ \ }$と求まる。さらに(*)で$n=3$として、$a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }$と求まる。

(2)$n \geqq 2$に対して$a_n=S_n-S_{n-1}$であるから(*)とあわせて
$(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)$

ゆえに、$n \geqq 3$ならば$(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_n$となる。そこで、$n \geqq 3$に
対して$b_n=(n-r)(n-s)(n-t)a_n$とおくと、漸化式
$b_{n+1}=b_n (nz-3,4,5,\ldots)$
が成り立つ。ただしここに、$r \lt s \lt t$として$r=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }$である。
したがって、$n \geqq 4$に対して
$a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}$
となる。この式は$n=3$の時も成立する。

(3)$n \geqq 2$に対して
$S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}$
であるから、$S_n \geqq 59$となる最小の$n$は$n=\boxed{\ \ ニヌ\ \ }$である。

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP