大学入試問題#445「何度か類題を解いたと思う」 藤田医科大学(2023) #定積分 - 質問解決D.B.(データベース)

大学入試問題#445「何度か類題を解いたと思う」 藤田医科大学(2023) #定積分

問題文全文(内容文):
(1)$\displaystyle \int_{3}^{99} \sqrt{ \sqrt{ 1+x }-1 }\ dx$


(2)$\displaystyle \int_{1}^{3} \sqrt{ \displaystyle \frac{4}{x}-1 }\ dx$


出典:2023年藤田医科大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:11 本編スタート(第一問)
03:39 第二問
08:52 作成した解答①
09:02 作成した解答②
09:13 エンディング(楽曲提供:兄いえてぃさん)

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \int_{3}^{99} \sqrt{ \sqrt{ 1+x }-1 }\ dx$


(2)$\displaystyle \int_{1}^{3} \sqrt{ \displaystyle \frac{4}{x}-1 }\ dx$


出典:2023年藤田医科大学 入試問題
投稿日:2023.02.06

<関連動画>

大学入試問題#771「たぶん良問!」 島根大学後期(2023) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{2x-2}{2x^2-2x+1} dx$

出典:2023年島根大学後期 入試問題
この動画を見る 

大学入試問題#530「定石どおり」 信州大学(2000) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} e^{\sin\ x}\sin2x\ dx$

出典:2000年信州大学 入試問題
この動画を見る 

大学入試問題#803「マジで気合い!」 #大阪市立大学(2000) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{(1+x^2)^4} dx$

出典:2000年大阪市立大学
この動画を見る 

大学入試問題#144 東京理科大学(2006) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{a}\displaystyle \frac{dx}{e^x+4e^{-x}+5}=log\sqrt[ 3 ]{ 2 }$が成り立つとき$a$の値を求めよ。

出典:2006年東京理科大学 入試問題
この動画を見る 

福田の数学〜九州大学2024年理系第5問〜定積分で定義された数列の極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数$m$, $n$に対して
$I(m,n)$=$\displaystyle\int_1^ex^me^x(\log x)^ndx$
とする。以下の問いに答えよ。
(1)$I(m+1,n+1)$を$I(m,n+1)$, $I(m,n)$, $m$, $n$を用いて表せ。
(2)すべての自然数$m$に対して、$\displaystyle\lim_{n \to \infty}I(m,n)$=0 が成り立つことを示せ。
この動画を見る 
PAGE TOP