【数Ⅲ】三角関数での置換【知らないと絶対にできない置換積分】 - 質問解決D.B.(データベース)

【数Ⅲ】三角関数での置換【知らないと絶対にできない置換積分】

問題文全文(内容文):
$ (1)\displaystyle \int_{0}^{1}\dfrac{1}{\sqrt{4-x^2}}dxを求めよ.$
$ (2)\displaystyle \int_{0}^{\sqrt3}\dfrac{0}{x^2+1}dxを求めよ.$
$ (3)\displaystyle \int_{0}^{1}\dfrac{1}{x^2+4x+3}dx,\displaystyle \int_{0}^{1}\dfrac{1}{x^2+4x+4}dx,\displaystyle \int_{-2}^{-1}\dfrac{1}{x^2+4x+5}dxを求めよ.$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int_{0}^{1}\dfrac{1}{\sqrt{4-x^2}}dxを求めよ.$
$ (2)\displaystyle \int_{0}^{\sqrt3}\dfrac{0}{x^2+1}dxを求めよ.$
$ (3)\displaystyle \int_{0}^{1}\dfrac{1}{x^2+4x+3}dx,\displaystyle \int_{0}^{1}\dfrac{1}{x^2+4x+4}dx,\displaystyle \int_{-2}^{-1}\dfrac{1}{x^2+4x+5}dxを求めよ.$
投稿日:2023.02.18

<関連動画>

福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 関数f(x)=\frac{1}{2}(x+\sqrt{2-3x^2}) の定義域は-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}であり、\\
f(x)はx=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}のとき、最大値\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}をとる。曲線y=f(x)、\\
\\
直線y=2xおよびy軸で囲まれた図形の面積は\boxed{\ \ ケ\ \ }となる。\\
\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\frac{\sqrt3}{18}\pi  ①\frac{\sqrt3}{36}\pi  ②\frac{\sqrt3}{72}\pi  ③\frac{1}{6}+\frac{\sqrt3}{36}\pi  ④\frac{1}{24}+\frac{\sqrt3}{36}\pi\\
⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi  ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi  ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi  ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi  ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi
\end{eqnarray}
この動画を見る 

【高校数学】毎日積分77日目~47都道府県制覇への道~【⑳和歌山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【和歌山大学 2023】
次の問いに答えよ。ただし、$\sqrt{3}>1.73$である。
(1)$ x=tant$の時,$\displaystyle \frac{1}{1+x^2}$を$cost$を用いて表せ。
(2) 定積分$\displaystyle \int_0^{\frac{1}{3}}\frac{1}{1+x^2}dx$を求めよ。
(3) すべての実数$x$に対して、$\displaystyle \frac{1}{1+x^2}≧1+ax^2$が成り立つような実数$a$の最大値を求めよ。
(4) 円周率は$3.07$より大きいことを示せ。
この動画を見る 

【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第1問(2)〜定積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (2)\logを自然対数とするとき、次の等式が成り立つ。\\
\lim_{h \to 0}\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h}\log(|\sin t|^{\frac{1}{h}})dt=
\frac{1}{\boxed{\ \ ウ\ \ }}\log\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}
\end{eqnarray}
この動画を見る 

【高校数学】毎日積分50日目 実践編①回転体シリーズ~必要な平面を図示~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xyz空間内で4点(0,0,0),(1,0,0),(1,1,0),(0,1,0)を頂点とする正方形の周および内部をKとし、Kをx軸のまわりに1回転させてできる立体をKx,Kをy軸のまわりに1回転させてできる立体をKyとする。さらに、KxとKyの共通部分をLとし、KxとKyの少なくともどちらか一方に含まれる点全体からなる立体をMとする。このとき、以下の問いに答えよ。
(1) Kxの体積を求めよ。
(2)平面z=tがKxと共有点をもつような実数tの値の範囲を答えよ。またこのとき、Kxを平面z=tで切った断面積A(t)を求めよ。
(3)平面z=tがLと共有点をもつような実数tの値の範囲を答えよ。また、このとき、Lを平面z=tで切った断面積B(t)を求めよ。
(4) Lの体積を求めよ。
(5) Mの体積を求めよ。
この動画を見る 
PAGE TOP