【数C】【空間ベクトル】四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ - 質問解決D.B.(データベース)

【数C】【空間ベクトル】四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ

問題文全文(内容文):
四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ
チャプター:

0:00 問題概要
0:31 3点が一直線上にある、ときたら…?
0:50 重心の位置ベクトル
1:20 なぜ始点をOにするのか?
1:33 実数kを掛けるのはどっち?
2:45 係数足して1、の解法を使うためにOMベクトルを召喚
3:05 欲しいもの(OMベクトル)を強引に作って、微調整をしていく方法
4:00 状況を図示、証明終了

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ
投稿日:2025.08.21

<関連動画>

福田の数学〜早稲田大学2024年人間科学部第3問〜平面へ下ろした垂線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 直方体OABC-DEFGにおける各辺の長さは
OA=CB=DE=GF=1
AB=OC=EF=DG=$\sqrt 2$
OD=AE=BF=CG=$\sqrt 3$
である。点Bから3点O, E, Gを含む平面に下ろした垂線の足をHとする。このとき、$\overrightarrow{\textrm{OH}}$=$\displaystyle\frac{\boxed{ケ}}{\boxed{コ}}\overrightarrow{\textrm{OE}}$+$\displaystyle\frac{\boxed{サ}}{\boxed{シ}}\overrightarrow{\textrm{OG}}$ と表すことができ、$|\overrightarrow{\textrm{BH}}|^2$=$\displaystyle\frac{\boxed{ス}}{\boxed{セ}}$ である。
この動画を見る 

福田の数学〜東京医科歯科大学2024医学部第2問〜ベクトルの勾配と無理不等式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{2} xyz$ 空間において、点$\mathrm{ A }( 1, 0, 0 )$, $\mathrm{ B }(0, 1, 0)$, $\mathrm{ C }(-1, 0, 0)$, $\mathrm{ D }(0, 0, 1)$ をとり、線分 $\mathrm{ CD }$の中点を$\mathrm{ M }$とする。さらに、$\mathrm{ N }$を線分$\mathrm{ BD }$上の点とする。また、$z$軸と平行でない直線上の異なる2点$\mathrm{ P }(x, y, z), \mathrm{ Q }(x', y', z')$ に対して
$\frac{z' - z}{\sqrt{(x' - x) ^ 2 + (y' - y) ^ 2}}$をベクトル$\overrightarrow{ \mathrm{ PQ } }$の勾配と呼ぶ。$\overrightarrow{ \mathrm{ AN } }$の勾配を$t_1$、$\overrightarrow{ \mathrm{ NM } }$の勾配を$t_2$とするとき、
以下の各問いに答えよ。
(1) $t_2 = 0$ となるように$\mathrm{ N }$をとったとき、$t_1$の値を求めよ。
(2) $l = |\overrightarrow{ \mathrm{ AN } }|+|\overrightarrow{ \mathrm{ NM } }|$とし、$l$が最小となるように$\mathrm{ N }$をとったとき、$l$の値を求めよ。
(3) $0 \leqq t_{2} \leqq t_{1}$ となるように$\mathrm{ N }$をとったとき、$\mathrm{ N }$の$y$座標を$s$とする。$s$がとりうる値の範囲を求めよ。
この動画を見る 

【数C】空間ベクトル:平行、一直線の問題!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)四面体ABCDにおいて、△ABCの重心をE、△ABDの重心をFとするとき、EF//CDであることを証明せよ。
(2)3点A(-1,-1,-1),B(1,2,3),C(x,y,1)が一直線上にあるとき、x,yの値を求めよ。
この動画を見る 

【高校数学】 数B-35 空間の点の座標

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎点P(3.5.4)である右の図のような 直方体OABC-RSPQについて求めよう。

①頂点Bの座標

②頂点、Aの座標

③頂点Rの座標

④頂点Qの座標

⑤SRとPBのなす角

◎点(2.1.3)について、それぞれに関して対称な点の座標を求めよう。

⑥ zx平面

⑦Z軸

⑧原点

※図は動画内参照
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第3問〜空間における面対称な点と折れ線の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$正四面体$OABC$の辺$BC$の中点をM、辺OCを1:2に内分する点をNとする。
点Nと平面OABに関して対称な点をPとする。このとき、
$\overrightarrow{ OP }=\frac{\boxed{\ \ ア\ \ }\ \overrightarrow{ OA }+\boxed{\ \ イ\ \ }\ \overrightarrow{ OB }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ OC }}{\boxed{\ \ エ\ \ }}$
である。
次に、点Qは平面OAB上の点で$|\overrightarrow{ MQ }|+|\overrightarrow{ QN }|$が最小になる点とする。
このとき、
$\overrightarrow{ OQ }=\frac{\boxed{\ \ オ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ カ\ \ }\ \overrightarrow{ OB }}{\boxed{\ \ キ\ \ }}$
である。

2022早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP