虚数の3乗根 島根大 - 質問解決D.B.(データベース)

虚数の3乗根 島根大

問題文全文(内容文):
$z^3=i$

島根大過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^3=i$

島根大過去問
投稿日:2023.11.13

<関連動画>

大学入試問題#444「複素数の王道手筋」 神戸大学(1998) 文系 #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z$:虚数
(1)
$z+\displaystyle \frac{1}{z}$が実数の時
$|z|$の値$a$を求めよ。

(2)
$|z|=a$のとき
$\omega=(z+\sqrt{ 2 }+\sqrt{ 2 }i)^4$において$|\omega|,\ argw$の範囲を求めよ。

出典:1998年神戸大学 入試問題
この動画を見る 

高校の範囲で解ける積分 By 英語orドイツ語シはBかHか さん #定積分

アイキャッチ画像
単元: #複素数平面#積分とその応用#複素数平面#定積分#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} arg(1+\sqrt{ -x }) dx$
$-\pi \leqq arg(1+\sqrt{ -x }) \lt \pi$
この動画を見る 

数学Ⅲが1時間で分かる動画!極限、微分積分をメインに!複素数平面を添えて【篠原好】

アイキャッチ画像
単元: #数Ⅱ#複素数平面#微分法と積分法#平均変化率・極限・導関数#複素数平面#数学(高校生)#数C
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
極限、微分積分をメインに!複素数平面を添えて
「数学Ⅲが1時間で分かる」動画です。
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
この動画を見る 

一橋大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を

$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり

を求めよ.$n$は自然数である.

一橋大学過去問
この動画を見る 
PAGE TOP