問題文全文(内容文):
正の数$x$に対して、$x$以下の最大の整数を$[x]$と表す。
\begin{eqnarray}
\left\{
\begin{array}{l}
[x] + [2x] = 7 \\
3x^2 - 4[2x]x + 16[x] = 0
\end{array}
\right.
\end{eqnarray}
$[x]$=? $x$=?
正の数$x$に対して、$x$以下の最大の整数を$[x]$と表す。
\begin{eqnarray}
\left\{
\begin{array}{l}
[x] + [2x] = 7 \\
3x^2 - 4[2x]x + 16[x] = 0
\end{array}
\right.
\end{eqnarray}
$[x]$=? $x$=?
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#渋谷教育学園幕張高等学校
指導講師:
数学を数楽に
問題文全文(内容文):
正の数$x$に対して、$x$以下の最大の整数を$[x]$と表す。
\begin{eqnarray}
\left\{
\begin{array}{l}
[x] + [2x] = 7 \\
3x^2 - 4[2x]x + 16[x] = 0
\end{array}
\right.
\end{eqnarray}
$[x]$=? $x$=?
正の数$x$に対して、$x$以下の最大の整数を$[x]$と表す。
\begin{eqnarray}
\left\{
\begin{array}{l}
[x] + [2x] = 7 \\
3x^2 - 4[2x]x + 16[x] = 0
\end{array}
\right.
\end{eqnarray}
$[x]$=? $x$=?
投稿日:2025.01.26





