大学入試問題#834「置換一択!?」 #弘前大学(2022) #定積分 - 質問解決D.B.(データベース)

大学入試問題#834「置換一択!?」 #弘前大学(2022) #定積分

問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{\sqrt{ 3 }}^{2} (3x-1)\sqrt{ 4-x^2 }\ dx$

出典:2022年広前大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{\sqrt{ 3 }}^{2} (3x-1)\sqrt{ 4-x^2 }\ dx$

出典:2022年広前大学 入試問題
投稿日:2024.05.29

<関連動画>

福田の数学〜青山学院大学2025理工学部第4問〜折れ線の長さの和が4となる点の軌跡と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$xy$平面上に$2$つの定点$A(-1,0),B(1,0)$がある。

線分$AB$上の点$P$に対して、

$xy$平面上の点$Q$は以下の条件$(a),(b)$を

満たすとする。

$(a)$$P$と$Q$の$x$座標は等しく、

$Q$の$y$座標は正である。

$(b)$$AP+PQ+QB=4$

このとき、以下の問いに答えよ。

ただし、線分は両方の端点を含むものとする。

(1)$P$の座標を$(s,0)$とするとき、

$Q$の座標を$s$を用いて表せ。

(2)$P$が線分$AB$上を$A$から$B$まで動くとき、

$Q$の軌跡を$xy$平面上に図示せよ。

(3)$P$が線分$AB$上を$A$から$B$まで動くとき、

線分$PQ$が通過する範囲の面積を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)0≦$x$<$\pi$のとき、方程式$\cos 3x$+$\cos x$=0 の解は$x$=$\boxed{\ \ イ\ \ }$である。
この動画を見る 

#会津大学2024#定積分_3#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{e^2}^{e^3} \displaystyle \frac{1}{x log x} dx$

出典:2024年会津大学
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(3)〜n進法

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
(3)$n$進法で$2021_{(n)}$と表される数が、素数であるような$n$の最小値を十進法で表すと$\boxed{\ \ コ\ \ }$となり、合成数である(素数ではない)ような$n$の最小値を十進法で表すと$\boxed{\ \ サ\ \ }$となる。
この動画を見る 

京都大学 確率 数列 融合問題 高校数学 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2005京都大学過去問題
1~nまでの番号のついてn枚($n \geqq 3$,自然数)から3枚取り出して小さい順に並べたときに等差数列になる確率を求めよ.
この動画を見る 
PAGE TOP