すべて○けろ!!式の値 - 質問解決D.B.(データベース)

すべて○けろ!!式の値

問題文全文(内容文):
$\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{1}{4}$
$\frac{d}{a} =?$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{1}{4}$
$\frac{d}{a} =?$
投稿日:2023.05.02

<関連動画>

最後まで〇〇するなよ因数分解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$(ac+bd)^2 - (ad + bc)^2$

関西医科大学
この動画を見る 

【手元動画】数学IA 図形と計量の攻略法

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\triangle ABC$において、$BC=2\sqrt{ 2 }$とする。
$\angle ACB$の二等分線と辺$AB$の交点を$D$とし、$CD=\sqrt{ 2 }, \cos \angle BCD=\displaystyle \frac{3}{4}$とする。
このとき、$BD=$[ア]であり$\sin \angle ADC=\displaystyle \frac{[イウ]}{[エ]}$である。
$\displaystyle \frac{AC}{AD}=\sqrt{ オ }$であるから$AD=[カ]$である。
$\triangle ABC$の外接円の半径は$\displaystyle \frac{キ\sqrt{ ク }}{ケ}$である
この動画を見る 

【数Ⅰ】【図形と計量】測量への応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
先端がAの塔ABの高さを測るために,∠BCD=90°,CD=15m となる2地点C, D を地面上にとったところ,∠BDC=30° で,点CでのAの仰角が60°であった。塔の高さ AB を求めよ。
この動画を見る 

数と式の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.次の式の分母を有理化せよ。
$\displaystyle \frac{1}{1+\sqrt{ 2 }+\sqrt{ 3 }}$

2.次の問いに答えよ。
$x=\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }},\ y=\displaystyle \frac{\sqrt{ 5 }-\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}$のとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$

3.次の問いに答えよ。
$x+\displaystyle \frac{1}{x}=3$のとき、次の式の値を求めよ。
(1)$x^2+\displaystyle \frac{1}{x^2}$
(2)$x-\displaystyle \frac{1}{x}$
(3)$x-^3+\displaystyle \frac{1}{x^3}$
(4)$x^4+\displaystyle \frac{1}{x^4}$
この動画を見る 

【数A】【数と式】つぎの等式のどこが間違えっているでしょう。√(4-2√3)=√(1+3-2√1・3)=√(√1-√3)²=√1-√3=1-√3

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の二重根号を外しなさい
$\sqrt{4-2\sqrt{3}} $
※解法に間違いがあるので
見つけましょう!
この動画を見る 
PAGE TOP