#大阪医科大学2014 - 質問解決D.B.(データベース)

#大阪医科大学2014

問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \sin^2 n\pi \ x \ dx$
$n:$自然数

出典:2014年大阪医科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \sin^2 n\pi \ x \ dx$
$n:$自然数

出典:2014年大阪医科大学
投稿日:2024.06.07

<関連動画>

福田の数学〜北海道大学2023年文系第4問〜円と放物線の共通接線と囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ qを実数とする。座標平面上に円C:$x^2$+$y^2$=1と放物線P:y=$x^2$+q がある。
(1)CとPに同じ点で接する傾き正の直線が存在するとき、qの値およびその接点の座標を求めよ。
(2)(1)で求めたqの値を$q_1$、接点のy座標を$y_1$とするとき、連立不等式
$\left\{\begin{array}{1}
x^2+y^2≧1\\
y≧x^2+q_1\\
y≦y_1\\
\end{array}\right.$
の表す領域の面積を求めよ。

2023北海道大学文系過去問
この動画を見る 

#岩手大学(2018) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} x^3log\ x\ dx$

出典:2018年岩手大学
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第5問〜2次関数の区間の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$aを実数とする。関数
$f(x)=-x^2+6x(a-2 \leqq x \leqq a)$
の最大値をg(a)、最小値をh(a)とする。このとき、
$ab$平面において$b=g(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ ア\ \ }$であり、
ab平面において$b=h(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ イ\ \ }$である。

2022早稲田大学人間科学部過去問
この動画を見る 

大学入試問題#25 岩手大学(2020) 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
絶対値が1で偏角が$\displaystyle \frac{\pi}{5}$の複素数を$z$とする。
(1)$1+z+z^2+・・・+z^9$を求めよ。
(2)$z^4-z^3+z^2-z$を求めよ。

出典:2020年岩手大学 入試問題
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(3)〜集合と対数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)関数$f(x)=\log_{\frac{1}{3}}\sqrt{3x^3-2x^2}$と$g(x)=\log_9(3x^2-2)$の定義域をそれぞれ
集合A,Bで表すと、$A\cap B=\left\{x|xはx \gt \boxed{\ \ オ\ \ }$を満たす実数である。
実数xが集合$A\cap B$の要素であるとき、$f(x)+g(x) \lt 0$となるための条件は
$\boxed{\ \ オ\ \ } \lt x \lt \boxed{\ \ カ\ \ }$または$x \gt \boxed{\ \ キ\ \ }$となることである。

2022慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP