福田の数学〜青山学院大学2021年理工学部第1問〜さいころの目の最大最小の確率 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2021年理工学部第1問〜さいころの目の最大最小の確率

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 1個のさいころを4回投げるとき、出た目の最小値をm、最大値をMとする。\\
(1)m \geqq 2となる確率は\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカキ\ \ }}であり、m=1となる確率は\frac{\boxed{\ \ クケコ\ \ }}{\boxed{\ \ サシスセ\ \ }}である。\\
(2)m \geqq 2かつM \leqq 5となる確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}であり、m \geqq 2かつM=6となる確率は\\
\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニヌ\ \ }}である。\\
\\
(3)m=1かつM=6となる確率は\frac{\boxed{\ \ ネノハ\ \ }}{\boxed{\ \ ヒフヘ\ \ }}である。
\end{eqnarray}
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 1個のさいころを4回投げるとき、出た目の最小値をm、最大値をMとする。\\
(1)m \geqq 2となる確率は\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカキ\ \ }}であり、m=1となる確率は\frac{\boxed{\ \ クケコ\ \ }}{\boxed{\ \ サシスセ\ \ }}である。\\
(2)m \geqq 2かつM \leqq 5となる確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}であり、m \geqq 2かつM=6となる確率は\\
\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニヌ\ \ }}である。\\
\\
(3)m=1かつM=6となる確率は\frac{\boxed{\ \ ネノハ\ \ }}{\boxed{\ \ ヒフヘ\ \ }}である。
\end{eqnarray}
投稿日:2021.09.10

<関連動画>

【高校数学】組合せの例題~最低でもこれはできるように~ 1-10.5【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)正六角形の6個の頂点のうち3点を結んで三角形を作るとき、
  三角形は何個作れるか。

(2)6本の平行線と、それらに交わる7本の平行線によってできる
  平行四辺形は何個か。

(3)7人を次のようにする方法は何通りあるか。
  (a)部屋A、B、Cに2人ずつ入れ、部屋Dに1人入れる。
  (b)2人,2人,2人,1人の4組に分ける
この動画を見る 

確率 4S数学問題集数A 133 トランプを引く順番と確率【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
ジョーカーを1枚だけ含む1組53枚のトランプがある。カードをもとに戻さずに1枚ずつ続けて引いていくとき、10枚目にジョーカーが出る確率を求めよ。
この動画を見る 

【高校数学】順列~理解すれば怖くない~ 1-6【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
順列についての説明動画です
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第6問〜新型ウィルス感染拡大による休業要請と補償金の期待値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ 新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間\\
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を\\
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば\\
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円と\\
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もしC \lt 90\\
であれば、飲食店は要請に応じず、超過利益は0万円とする。\\
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円\\
(D \geqq C)であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は\\
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の\\
節約分は0万円とする。\\
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合\\
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体\\
の補償金の節約分が最も大きくなるのはC=\boxed{\ \ アイウ\ \ }\ 万円の場合である。\\
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店\\
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、\\
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの\\
とする。また、ここでは自治体が支払うことができる補償金の上限については、\\
125万円か150万円か175万円のどれかに定まっているが公表されておらず、\\
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である\\
確率が\frac{2}{5}であると予想しているものとする。\\
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限\\
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円\\
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。\\
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店\\
の超過利益(の期待値)は\boxed{\ \ エオカ\ \ }\ 万円となる。\\
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請\\
の際に自治体に提示したとすると\\
(\textrm{a})飲食店の超過利益(の期待値)は\boxed{\ \ キクケ\ \ }\ 万円であり、\\
(\textrm{b})自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は\\
\boxed{\ \ コサシ\ \ }\ 万円。\\
(\textrm{c})自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は\\
\boxed{\ \ スセソ\ \ }\ 万円。\\
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第6問〜新型ウィルス感染拡大による大学の授業形態の決定

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ ある大学で来学期の授業の形式をどうするかを検討している。\hspace{131pt}\\
授業形式の選択としては、通常の対面形式(授業形式uと呼ぶことにする)、\\
\textrm{Web}上で試料を閲覧できたり課題を行ったりできるオンデマンド形式(授業形式vと呼ぶことにする)\\
\textrm{Web}会議システムを使用するオンライン配信形式(授業形式wと呼ぶことにする)\\
の3つがあるとする。\\
また、来学期の新型ウイルスの感染状況については、\\
急激に拡大している状況(感染状況xと呼ぶことにする)、\\
ピークは過ぎたが十分な収束にはいたっていない状況(感染状況yとよぶことにする)、\\
ある程度収束した状況(感染状況zとよぶことにする)の3つが考えられるとする。\\
いま、この大学は授業形式と新型ウイルスの感染状況の組み合わせについて、\\
次の表(※動画参照)に示す評論値(値が高いほど評価も高い)を定めているものとする。\\
\\
来学期の感染状況について、感染状況xである確率をp_x、\\
感染状況yである確率をp_y、感染状況zである確率をp_zとすると、\\
xyz空間において点p=(p_x,p_y,p_z)は(1,0,0),(0,1,0),(0,0,1)を頂点とする正三角形上の\\
点としてあらわすことができる。この正三角形上において、点pから各辺に垂線を下ろしたとき、\\
(1,0,0)と向かいの辺に下ろした垂線の長さをl_x、(0,1,0)と向かいの辺に下した垂線の長さをl_y、\\
(0,0,1)と向かいの辺に下した垂線の長さをl_zとする。\\
(1)このときp_x=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\ l_x,\ \ \ \,p_y=\frac{\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\ l_y,\ \ \ \ p_z=\frac{\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サシ\ \ }}\ l_z\ \ \ \ が成り立つ。\\
\\
いま、正三角形上の点p=(p_x,p_y,p_z)に対して、上記の評価の期待値を最大にする\\
授業形式のラベルをつけることにする。ただし、pによっては評価値を最大にする選択が\\
複数ある場合もあり、その場合にはpに複数のラベルをつけることにする。\\
さらに、原点と(0,1,0),(0,0,1)を原点とするyz平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にxという感染状況のラベルをつけ、\\
原点と(1,0,0),(0,0,1)を原点とするxz平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にyという感染状況のラベルをつけ、\\
原点と(1,0,0),(0,1,0)を原点とするxy平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にzという感染状況のラベルをつけることにする。\\
\\
すると、正三角形と3つの直角二等辺三角形からなる四面体の面上(頂点、辺も含む)\\
のそれぞれの点には、1つもしくは複数のラベルがつくことになる。例えば、\\
原点には\left\{x,y,z\right\}の3つのラベルがつく。\\
(2)このとき、正三角形の面上(頂点、辺も含む)の各点pにつけられるラベルの\\
可能性を列挙すると、以下の通りとなる。ただし、複数のラベルがつけられる場合には、\\
それぞれの中括弧内では、アルファベット順に書くものとする。空欄に入る\\
ラベルについて下記の選択肢から選びなさい。\\
単一のラベルがつく場合:\left\{\boxed{\ \ ス\ \ }\right\},\left\{w\right\}\\
2つのラベルがつく場合:\left\{\boxed{\ \ セ\ \ },w\right\},\left\{u,\boxed{\ \ ソ\ \ }\right\},\\
\left\{\boxed{\ \ タ\ \ },y\right\},\left\{w,y\right\},\left\{\boxed{\ \ チ\ \ },z\right\}\\
3つのラベルがつく場合:\left\{\boxed{\ \ ツ\ \ },w,\boxed{\ \ テ\ \ }\right\},\left\{\boxed{\ \ ト\ \ },\boxed{\ \ ナ\ \ },\boxed{\ \ ニ\ \ }\right\}\\
4つのラベルがつく場合:\left\{u,\boxed{\ \ ヌ\ \ },\boxed{\ \ ネ\ \ },\boxed{\ \ ノ\ \ }\right\},\left\{\boxed{\ \ ハ\ \ },\boxed{\ \ ヒ\ \ },\boxed{\ \ フ\ \ },\boxed{\ \ ヘ\ \ }\right\}\\
\\
\\
選択肢:\ \ \ (1)\ \ \ u\ \ \ (2)\ \ \ v\ \ \ (3)\ \ \ w\ \ \ (4)\ \ \ x\ \ \ (5)\ \ \ y\ \ \ (6)\ \ \ z \ \ \
\end{eqnarray}
この動画を見る 
PAGE TOP