【6分でマスター!!】単項式と多項式の次数の求め方を解説!(係数と定数項についても)〔現役塾講師解説、数学〕 - 質問解決D.B.(データベース)

【6分でマスター!!】単項式と多項式の次数の求め方を解説!(係数と定数項についても)〔現役塾講師解説、数学〕

問題文全文(内容文):
数学1A
単項式と多項式の次数の求め方について解説します。
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
単項式と多項式の次数の求め方について解説します。
投稿日:2022.04.19

<関連動画>

【高校受験対策】数学-死守12

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の問いに答えよ.

①$5 \times (-4)^2 -3^2$を計算せよ.

②$\dfrac{5x-3y}{3}-\dfrac{3x-7y}{4}$を計算せよ.

③$\sqrt{27}-\dfrac{12}{\sqrt 3}-\sqrt{75}$を計算せよ.

④$x=\sqrt7+2,y=\sqrt7-2$のとき,
$x^2-y^2$の値を求めよ.

⑤方程式$2x+3y+6=0$のグラフをかけ.

⑥2次方程式$(x-2)^2=6$を解け.

⑦$1,2,4,8,16,32$の数が書かれた棒が1本ずつ入っている箱がある.
この箱から棒を同時に2本取り出すとき,
2本の棒に書かれている数の和が3の倍数となる確率を求めよ.
ただし,どの棒の取り出し方も同様に確からしいものとする.

⑧箱の中に白い玉だけがたくさん入っている.
この箱に赤い玉を80個入れてよくかき混ぜ,箱から50個の玉を無作為に取り出すと,
赤い玉が9個含まれていた.
最初に箱の中に入っていた白い玉はおよそ何個であると推測されるか,
次の(ア)~(エ)から1つ選べ.

(ア)およそ320個
(イ)およそ360個
(ウ)およそ400個
(エ)およそ440個

図は動画内を参照
この動画を見る 

【高校受験対策/数学】死守56

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56

①$4-6 \div (-2)$を計算しなさい。

②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。

③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。

④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。

⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。

⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。

⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。

⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 8発目!『最初に全部割れる編』 6x +4=8yをx=の形にしましょう。(すみません!まだあった!)

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
6x +4=8yをx=の形にしましょう。
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 6発目!『-は消しちゃおう編』 3x-2y=5をy=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3x-2y=5をy=の形にしましょう。
この動画を見る 

式の値 X求めなくていい

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$\dfrac{1}{x+2024}=2024$
$\dfrac{1}{x+2025}= ?$
この動画を見る 
PAGE TOP