問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)関数f(x)は微分可能であり、すべての実数xについて\\
\\
f(x)=e^{2x+1}+4\int_0^xf(t)dt\\
\\
を満たすとする。関数g(x)をg(x)=e^{-4x}f(x) により定めるとき、\\
g'(x)=\boxed{\ \ シ\ \ }であり、f(x)=\boxed{\ \ ス\ \ }である。また、曲線\ y=f(x)と\\
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる\\
回転体の体積は\boxed{\ \ セ\ \ }である。
2021北里大学医学部過去問
\end{eqnarray}
\begin{eqnarray}
{\Large\boxed{1}} (4)関数f(x)は微分可能であり、すべての実数xについて\\
\\
f(x)=e^{2x+1}+4\int_0^xf(t)dt\\
\\
を満たすとする。関数g(x)をg(x)=e^{-4x}f(x) により定めるとき、\\
g'(x)=\boxed{\ \ シ\ \ }であり、f(x)=\boxed{\ \ ス\ \ }である。また、曲線\ y=f(x)と\\
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる\\
回転体の体積は\boxed{\ \ セ\ \ }である。
2021北里大学医学部過去問
\end{eqnarray}
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)関数f(x)は微分可能であり、すべての実数xについて\\
\\
f(x)=e^{2x+1}+4\int_0^xf(t)dt\\
\\
を満たすとする。関数g(x)をg(x)=e^{-4x}f(x) により定めるとき、\\
g'(x)=\boxed{\ \ シ\ \ }であり、f(x)=\boxed{\ \ ス\ \ }である。また、曲線\ y=f(x)と\\
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる\\
回転体の体積は\boxed{\ \ セ\ \ }である。
2021北里大学医学部過去問
\end{eqnarray}
\begin{eqnarray}
{\Large\boxed{1}} (4)関数f(x)は微分可能であり、すべての実数xについて\\
\\
f(x)=e^{2x+1}+4\int_0^xf(t)dt\\
\\
を満たすとする。関数g(x)をg(x)=e^{-4x}f(x) により定めるとき、\\
g'(x)=\boxed{\ \ シ\ \ }であり、f(x)=\boxed{\ \ ス\ \ }である。また、曲線\ y=f(x)と\\
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる\\
回転体の体積は\boxed{\ \ セ\ \ }である。
2021北里大学医学部過去問
\end{eqnarray}
投稿日:2023.01.02