福田の数学〜北里大学2021年医学部第1問(4)〜定積分で表された関数と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜北里大学2021年医学部第1問(4)〜定積分で表された関数と回転体の体積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)関数f(x)は微分可能であり、すべての実数xについて\\
\\
f(x)=e^{2x+1}+4\int_0^xf(t)dt\\
\\
を満たすとする。関数g(x)をg(x)=e^{-4x}f(x) により定めるとき、\\
g'(x)=\boxed{\ \ シ\ \ }であり、f(x)=\boxed{\ \ ス\ \ }である。また、曲線\ y=f(x)と\\
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる\\
回転体の体積は\boxed{\ \ セ\ \ }である。

2021北里大学医学部過去問
\end{eqnarray}
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)関数f(x)は微分可能であり、すべての実数xについて\\
\\
f(x)=e^{2x+1}+4\int_0^xf(t)dt\\
\\
を満たすとする。関数g(x)をg(x)=e^{-4x}f(x) により定めるとき、\\
g'(x)=\boxed{\ \ シ\ \ }であり、f(x)=\boxed{\ \ ス\ \ }である。また、曲線\ y=f(x)と\\
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる\\
回転体の体積は\boxed{\ \ セ\ \ }である。

2021北里大学医学部過去問
\end{eqnarray}
投稿日:2023.01.02

<関連動画>

福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。

2023名古屋大学理系過去問
この動画を見る 

中学生の知識でオイラーの公式を理解しよう VOL 5 対数 logの微分

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 5 対数 logの微分
この動画を見る 

福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ aを実数、0 \lt a \lt 1とし、f(x)=\log(1+x^2)-ax^2とする。以下の問いに答えよ。\\
(1)関数f(x)の極値を求めよ。\\
(2)f(1)=0とする。曲線y=f(x)とx軸で囲まれた図形の面積を求めよ。
\end{eqnarray}

2022神戸大学理系過去問
この動画を見る 

新潟大 座標上の格子点の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93新潟大学
n自然数
$y=x^2$上の$(n,n^2)$における接線をl
$y=n^2$,l,及びy軸の3直線で囲まれた部分(境界含む)に含まれる格子点の数
この動画を見る 

福田のおもしろ数学037〜相加相乗平均の罠〜2変数関数の最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x>1,y>1$のとき、
$x+y+\frac{2}{x+y}+\frac{1}{2xy}$の最小値を求めよ
この動画を見る 
PAGE TOP