大学入試問題#660「合否をわける積分」 日本医科大学(2022) 定積分 - 質問解決D.B.(データベース)

大学入試問題#660「合否をわける積分」 日本医科大学(2022) 定積分

問題文全文(内容文):
$\displaystyle \int_{\frac{1}{2}}^{log2} \displaystyle \frac{dt}{e^t\sqrt{ e^{2t}-1 }}$

出典:2022年日本医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{2}}^{log2} \displaystyle \frac{dt}{e^t\sqrt{ e^{2t}-1 }}$

出典:2022年日本医科大学 入試問題
投稿日:2023.11.26

<関連動画>

#福島大学2023#定積分_33

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{ 1 } \sqrt{ 4-x^2 } dx$

出典:2023年福島大学
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第3問〜直角三角形と内接円

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\angle A=90°,\angle B=60°$である直角三角形ABCにおいて、
その内接円の中心をO、半径をrとおく。また$a=BC$とする。
(1)rをaで表せ。
(2)次の条件を満たす負でない整数k,l,m,nの組を一つ求めよ。
$OA:OB=1:k+\sqrt{l},  OA:OC=1:m+\sqrt{n}$

2022北海道大学文系過去問
この動画を見る 

福田の数学〜一橋大学2024年文系第2問〜2つの放物線が共有点で接線直交する条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $a$, $b$を実数とする。曲線$C$:$y$=$x^2$ と曲線$C'$:$y$=$-x^2$+$ax$+$b$はある点を共有しており、その点におけるそれぞれの接線は直交している。$C$と$C'$で囲まれた部分の面積の最小値を求めよ。
この動画を見る 

慶応義塾 正奇数角形にできる鈍角三角形の数 Mathematics Japanese university entrance exam Keio University

アイキャッチ画像
単元: #大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2007年 慶應義塾大学

$(1)$正九角形の頂点を結んでできる$84$個の三角形のうち、
純角三角形は何個か。

$(2)$正$2n+1$角形の頂点を結んでできる純角三角形の個数。
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第6問〜円柱と球の共通部分の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
半径1の円を底面とする高さが$\sqrt3$の直円柱と、半径がrの球を考える。
直円柱の底面の中心と球の中心が一致するとき、直円柱の内部と球の内部の
共通部分の体積V(r)を求めよ。

2022東北大学理系過去問
この動画を見る 
PAGE TOP