早稲田 微分・積分 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

早稲田 微分・積分 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
早稲田大学過去問題
$f(x)=(x+\frac{1}{2})^2,g(x)=\int_a^x f(t) dt$
$y=f(x)$と$y=g(x)$が異なる3点で交わるようなaの範囲
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
$f(x)=(x+\frac{1}{2})^2,g(x)=\int_a^x f(t) dt$
$y=f(x)$と$y=g(x)$が異なる3点で交わるようなaの範囲
投稿日:2018.08.09

<関連動画>

指数・対数 × 整数問題!落としたくない問題です【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_{ 2 } x-\log_{ 3 } y=1
\end{array}
\right.
\end{eqnarray}$を考える。

(1)この連立方程式を満たす自然数$x,y$の組を求めよ。
(2)この連立方程式を満たす正の実数$x,y$は、(1)で求めた自然数の組以外に存在しないことを示せ。

大阪大過去問
この動画を見る 

気を付けないと間違える計算問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
この動画を見る 

福田の数学〜筑波大学2022年理系第4問〜2つの三角関数のグラフで囲まれた部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 0 \lt a \lt 4とする。曲線\\
C_1:y= 4\cos^2x   (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2}),\\
C_2:y=a-\tan^2x   (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
は、ちょうど2つの共有点をもつとする。\\
(1)aの値を求めよ。\\
(2)C_1とC_2で囲まれた部分の面積を求めよ。
\end{eqnarray}

2022筑波大学理系過去問
この動画を見る 

京都大(文)4次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4-x^3+x^2-(a+2)x-a-3=0$が虚軸上の解をもつ実数$a$を求めよ

出典:2001年京都大学 大学院文学研究科 過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)座標空間内の4点(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)を頂点と\\
する四面体をP、4点(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)を頂点\\
とする四面体をQとする。RをPとQの共通部分とする。Rを平面z=\frac{1}{3}で\\
切ったときの切り口の面積を求めよ。\hspace{145pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 
PAGE TOP