福田の数学〜浜松医科大学2023年医学部第4問〜三角形と整数問題 - 質問解決D.B.(データベース)

福田の数学〜浜松医科大学2023年医学部第4問〜三角形と整数問題

問題文全文(内容文):
$\Large\boxed{4}$ $\triangle$ABCにおいて、BC=3, AC=$b$, AB=$c$, $\angle$ACB=$\theta$とする。$b$と$c$を素数とするとき、以下の問いに答えよ。
(1)$b$=3,$c$=5 のとき、$\cos\theta$の値を求めよ。
(2)$\cos\theta$<0 のとき、$c$=$b$+2 が成り立つことを示せ。
(3)$-\displaystyle\frac{5}{8}$<$\cos\theta$<$-\displaystyle\frac{7}{12}$ のとき、$b$と$c$の値の組をすべて求めよ。
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#三角形の辺の比(内分・外分・二等分線)#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $\triangle$ABCにおいて、BC=3, AC=$b$, AB=$c$, $\angle$ACB=$\theta$とする。$b$と$c$を素数とするとき、以下の問いに答えよ。
(1)$b$=3,$c$=5 のとき、$\cos\theta$の値を求めよ。
(2)$\cos\theta$<0 のとき、$c$=$b$+2 が成り立つことを示せ。
(3)$-\displaystyle\frac{5}{8}$<$\cos\theta$<$-\displaystyle\frac{7}{12}$ のとき、$b$と$c$の値の組をすべて求めよ。
投稿日:2023.08.12

<関連動画>

【#4】【因数分解100問】基礎から応用まで!(31)〜(40)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(31)$(x^2+5)(x+3)(x-3)$
(32)$(x^2+1)(x+1)(x-1)$
(33)$(a+2b)(a-2b)(2a+3b)(2a-3b)$
(34)$3b^2(3a+2bc)(3a-2bc)$
(35)$\dfrac{1}{4}(2a+b-c)(2a-b+c)$
(36)$(5x+3)(25x^2-15x+9)$
(37)$(2x-3y)(4x^2+6xy+9y^2)$
(38)$(x-2)(x+1)(x-3)(x+2)$
(39)$(x+1)(x+3)(x+2)^2$
(40)$(x-1)^2(x^2-2x-4)$
この動画を見る 

立方根・平方根の混じった方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ
$\sqrt[ 3 ]{ 2-x }+\sqrt{ x-1 }=1$
この動画を見る 

2023高校入試解説5問目 2次方程式の応用 西大和学園

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式$x^2 -ax + 1 = 0$の2つの解の差が$\frac{3}{2}$のときa=?
(a>0)
2023西大和学園高等学校
この動画を見る 

【数Ⅰ】中高一貫校用問題集(論理・確率編)集合と命題:命題と証明:背理法を使った証明

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt2$が無理数であることを用いて「1+2√2が無理数である」ことを証明せよ
この動画を見る 

「二次不等式の解の配置②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2-2ax-2a+3=0$が次のような解をもつとき、定数$a$の値の範囲を求めよ。
(1)異なる2つの正の解をもつ
(2)異なる2つの負の解をもつ
(3)$x \lt -2$の範囲に異なる2解をもつ
(4)$-1 \leqq x \leqq 2$の範囲に異なる2つの解をもつ
(5)正の解と負の解をそれぞれ1つずつもつ
(6)$0 \lt x \lt 2,2 \lt x \lt 4$の範囲に1つずつ解をもつ
(7)$-2 \leqq x \leqq 1,3 \leqq x \leqq 5$の範囲に1つずつ解をもつ
(8)2解のうちの1つを$1 \lt x \lt 5$の範囲にもつ
(9)$-4 \leqq x \leqq -2$の範囲に解をもつ
この動画を見る 
PAGE TOP