福田の数学〜浜松医科大学2023年医学部第4問〜三角形と整数問題 - 質問解決D.B.(データベース)

福田の数学〜浜松医科大学2023年医学部第4問〜三角形と整数問題

問題文全文(内容文):
$\Large\boxed{4}$ $\triangle$ABCにおいて、BC=3, AC=$b$, AB=$c$, $\angle$ACB=$\theta$とする。$b$と$c$を素数とするとき、以下の問いに答えよ。
(1)$b$=3,$c$=5 のとき、$\cos\theta$の値を求めよ。
(2)$\cos\theta$<0 のとき、$c$=$b$+2 が成り立つことを示せ。
(3)$-\displaystyle\frac{5}{8}$<$\cos\theta$<$-\displaystyle\frac{7}{12}$ のとき、$b$と$c$の値の組をすべて求めよ。
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#三角形の辺の比(内分・外分・二等分線)#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $\triangle$ABCにおいて、BC=3, AC=$b$, AB=$c$, $\angle$ACB=$\theta$とする。$b$と$c$を素数とするとき、以下の問いに答えよ。
(1)$b$=3,$c$=5 のとき、$\cos\theta$の値を求めよ。
(2)$\cos\theta$<0 のとき、$c$=$b$+2 が成り立つことを示せ。
(3)$-\displaystyle\frac{5}{8}$<$\cos\theta$<$-\displaystyle\frac{7}{12}$ のとき、$b$と$c$の値の組をすべて求めよ。
投稿日:2023.08.12

<関連動画>

素数か?

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A_{2023}$は素数か?
$A_n=\alpha^n+\beta^n+\delta^n$
$A_1=\alpha+\beta+\delta=1$
$A_2=\alpha^2+\beta^2+\delta^2=3$
$A_3=\alpha^3+\beta^3+\delta^3=10$
この動画を見る 

42を素因数分解の正答率  全国学力調査

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
42を素因数分解せよ

全国学力テスト中3
この動画を見る 

福田のおもしろ数学373〜4変数の連立方程式と循環形式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
abc+ab+bc+ca+a+b+c=2 \\
bcd+bc+cd+db+b+c+d=0 \\
cda+cd+da+ac+c+d+a=2 \\
dab+da+ab+bd+d+a+b=5
\end{array}
\right.
\end{eqnarray}
を満たす実数$a,b,c,d$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第1問(2)〜不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)次の連立不等式で表される領域の面積は$\boxed{イ}$+$\boxed{ウ}\pi$ である。
$\left\{\begin{array}{1}
x^2+y^2≦4|x|+4|y|\\
x^2≦y^2\\
\end{array}\right.$
この動画を見る 

2023京都大学 3乗根の分母の有理化

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
分母を有利化せよ.
$\dfrac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$

2023京都大過去問
この動画を見る 
PAGE TOP