ハルハル様の作成問題③ #複素数 - 質問解決D.B.(データベース)

ハルハル様の作成問題③ #複素数

問題文全文(内容文):
$z$:複素数
$a$:実数
$2Z^2+3|Z|Z=a$を解け
チャプター:

00:00 問題提示
00:20 ハルハルさんの解答の紹介(本編スタート)
09:23 作成した解答①の紹介
09:36 作成した解答②の紹介
09:50 作成した解答③の紹介
10:06 困ったときの解答①の紹介
17:51 作成した解答①の紹介
18:06 作成した解答②の紹介
18:19 作成した解答③の紹介

単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z$:複素数
$a$:実数
$2Z^2+3|Z|Z=a$を解け
投稿日:2022.07.16

<関連動画>

問題の背景を探る ハンガリーJr数学Olympic

アイキャッチ画像
単元: #複素数平面#円#三角関数#複素数#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2=81$
$x^2+y^2=121$
$ax+by=99$
$ay-bx=?$
これを解け.

ハンガリーjr数学オリンピック過去問
この動画を見る 

【高校数学】数Ⅲ-21 三角形の形状②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
異なる3つの複素数$z_1,z_2,z_3$の間に
等式$z_1+i \\\ z_2=(1+i)z_3$が成り立つとき,
3点$P(z_1),Q(z_2),R(z_3)$を頂点とする$\triangle PQR$は
どのような三角形か.
この動画を見る 

福田の数学〜zを正負で場合分けできないときどうする〜明治大学2023年全学部統一Ⅲ第1問(2)〜複素数に関する2次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)複素数$z$の方程式
$z^2$-3|$z$|+2=0
を考える。この方程式は$\boxed{\ \ イ\ \ }$個の解を持ち、このうち実数でないかの個数は$\boxed{\ \ ウ\ \ }$個である。
この動画を見る 

複素数のいい問題 山形大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数学(高校生)#山形大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
複素数平面上の相異なる3点A(α),B(β),C(γ)において
$α^2+β^2+γ^2=αβ+βγ+αγ$が成り立つなら△ABCは正三角形であることを示せ
この動画を見る 

【高校数学】 数Ⅱ-23 複素数①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の複素数の実部と虚部を書こう。
①$5-2i$

②$-7+i$

③$\displaystyle \frac{-2-3i}{5}$

④$-7$

⑤$2i$

◎次の等式を満たす実数x,yの値を求めよう。

⑥$(x+2)+(x-y)i=5-i$

⑦$(x+2y)+(x-6)i=0$
この動画を見る 
PAGE TOP