問題文全文(内容文):
問題6.次の問いに答えなさい。
(13) nを正の整数とします。$\sqrt{120n}$が正の整数となるようなnの最小値を求めなさい。
(14) $x=\sqrt6+\sqrt2,y=\sqrt6-\sqrt2$のとき、$x^2-y^2$の値を求めなさい。
問題6.次の問いに答えなさい。
(13) nを正の整数とします。$\sqrt{120n}$が正の整数となるようなnの最小値を求めなさい。
(14) $x=\sqrt6+\sqrt2,y=\sqrt6-\sqrt2$のとき、$x^2-y^2$の値を求めなさい。
チャプター:
0:00 問題6の説明
0:12 (13)の解説
2:34 (14)の解説
3:37 まとめ
単元:
#数学(中学生)#中3数学#平方根#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題6.次の問いに答えなさい。
(13) nを正の整数とします。$\sqrt{120n}$が正の整数となるようなnの最小値を求めなさい。
(14) $x=\sqrt6+\sqrt2,y=\sqrt6-\sqrt2$のとき、$x^2-y^2$の値を求めなさい。
問題6.次の問いに答えなさい。
(13) nを正の整数とします。$\sqrt{120n}$が正の整数となるようなnの最小値を求めなさい。
(14) $x=\sqrt6+\sqrt2,y=\sqrt6-\sqrt2$のとき、$x^2-y^2$の値を求めなさい。
投稿日:2022.10.05