連立方程式の応用問題を難なく解く動画~全国入試問題解法 #shorts #数学 #高校受験 #過去問 - 質問解決D.B.(データベース)

連立方程式の応用問題を難なく解く動画~全国入試問題解法 #shorts #数学 #高校受験 #過去問

問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=14 \\
ax+by=3
\end{array}
\right.
\end{eqnarray}$

$ \begin{eqnarray}
\left\{
\begin{array}{l}
bx-ay=-5 \\
4x-5y=11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき,$ a,b $の値をそれぞれ求めなさい.

巣鴨高校過去問
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=14 \\
ax+by=3
\end{array}
\right.
\end{eqnarray}$

$ \begin{eqnarray}
\left\{
\begin{array}{l}
bx-ay=-5 \\
4x-5y=11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき,$ a,b $の値をそれぞれ求めなさい.

巣鴨高校過去問
投稿日:2023.02.19

<関連動画>

【テスト対策 中2】5章-3

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\angle x$の大きさを求めなさい。

①$AD=CD,CD$は$\angle ACB$の二等分線

②$ABCD$は平行四辺形、$BE=CE$

③$ABCD$はひし形、$AD=AE$

④$CD=CE$
$BFC=90°$

図は動画内参照
この動画を見る 

連立方程式

アイキャッチ画像
単元: #連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
zx-z-x=19 \\
yz-y-z=14 \\
xy-x-y=11 \\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校受験対策】数学-規則性6

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1のような、縦$acm$、横$bcm$の長方形の紙がある。
この長方形の紙に対して次のような【操作】を行う。ただし$a$、$b$は正の整数であり、$a \lt b$とする。

【操作】
長方形の紙から短い方の辺を1辺とする正方形を切り取る。
残った四角形が正方形でない場合には、その四角形からさらに同様の方法で正方形を切り取り、残った四角形が正方形になるまで繰り返す。

例えば、図2のように、$a$=3、$ b$=4の長方形の紙に対して【操作】を行うと、1辺3cmの正方形の紙が1枚、1辺1cmの正方形の紙が3枚、全部で4枚の正方形ができる。
このとき次の問1、間2、間3、間4に答えなさい。


問1
$a$=4、$b$=6の長方形の紙に対して【操作】を行ったとき、できた正方形のうち最も小さい正方形の 1辺の長さを求めなさい。

問2
$n$を正の整数とする。$a=n$、$b=3n+1$の長方形の紙に対して【操作】を行ったとき、正方形は全部で何枚できるか。$n$を用いて表しなさい。

問3
ある長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全部で4枚できた。
これらの正方形は、1辺の長さが長い順に、12cmの正方形が1枚、$x$cmの正方形が1枚、$y$cmの正方形が2枚であった。
このとき、$x$、$y$の連立方程式をつくり、$x$、$y$の値を求めなさい。ただし、 途中の計算も書くこと。

問4
$b=56$の長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全で5枚できた。このとき考えられる$a$の値をすべて求めなさい。
この動画を見る 

【中学数学】平行と合同:多角形と角 星形五角形の内角の和☆

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 理数個別チャンネル
問題文全文(内容文):
星形五角形の内角の和は?
この動画を見る 

【数学】中2-9 文字式の利用① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋めよ。
整数$m,n$を使ってどう表す?
①3の倍数→____
②7の倍数→____
③偶数→____
④奇数→____
⑤連続する3つの偶数
→____,____,____
⑥連続する3つの奇数
→____,____,____
⑦連続する3つの整数
→____,____,____
⑧2つの偶数
→____,____
⑨2つの奇数
→____,____
⑩3で割ると2余る数
→____

◎連続する3つの奇数の和は
3の倍数になることを説明しよう!

【説明】$n$を⑪____とすると、
連続する3つの奇数は、それぞれ
⑫____,⑬____,⑭____と表される。
( ⑫ )+( ⑬ )+( ⑭ )
⑮____=⑯____
⑰____は⑱____なので、
⑯____は3の倍数になる。
よって、連続する3つの奇数の和は
3の倍数になる。
この動画を見る 
PAGE TOP