【数A】【整数の性質】素因数分解を利用する問題 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【整数の性質】素因数分解を利用する問題 ※問題文は概要欄

問題文全文(内容文):
次のような自然数の個数を求めよ。
(1)108以下の自然数で,108と互いに素である自然数
(2)600以下の自然数で,600と互いに素である自然数

(1)1から240までの240個の自然数の積N=1・2・3・・・240について,Nを素因数分解したとき,素因数3の個数を求めよ。
(2)1から450までの450個の自然数の積N=1・2・3・・・450について,Nを素因数分解したとき,素因数7の個数を求めよ。

次のような自然数の積Nを計算すると,末尾には0が連続して何個並ぶか
(1)1から125までの125個の自然数の積N=1・2・3・・・125
(2)1から300までの300個の自然数の積N=1・2・3・・・300
チャプター:

0:00 問題1の解説
5:21 問題2の解説
8:26 問題3の解説
10:37 エンディング

単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような自然数の個数を求めよ。
(1)108以下の自然数で,108と互いに素である自然数
(2)600以下の自然数で,600と互いに素である自然数

(1)1から240までの240個の自然数の積N=1・2・3・・・240について,Nを素因数分解したとき,素因数3の個数を求めよ。
(2)1から450までの450個の自然数の積N=1・2・3・・・450について,Nを素因数分解したとき,素因数7の個数を求めよ。

次のような自然数の積Nを計算すると,末尾には0が連続して何個並ぶか
(1)1から125までの125個の自然数の積N=1・2・3・・・125
(2)1から300までの300個の自然数の積N=1・2・3・・・300
投稿日:2025.01.23

<関連動画>

福田の数学〜慶應義塾大学理工学部2025第1問(2)〜6または8または9で割り切れる数の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$n$を自然数とする。

$1$から$n$までの自然数の中で$6$または$8$または

$9$で割り切れるものの個数を$a_n$で表す。

このとき、$a_{30}=\boxed{ウ}$となる。

また、$a_n=1000$を満たす最大の$n$は$\boxed{エ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

整数問題  筑紫女学園(改)

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n^3-4n=105$をみたす自然数n=?

筑紫女学園高等学校(改)
この動画を見る 

整数問題 履正社 (大阪)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{900}{n}}$と$\frac{n+2}{9}$がともに自然数となる自然数nのうち最も小さいものは?
履正社高等学校
この動画を見る 

整数問題 明治大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学 過去問

nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
この動画を見る 

部屋割り 組分け 他の問題もあり

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
部屋割り・グループ分け
(1)6人がAまたはBまたはCの3部屋に入る方法は何通り?
(1人も入らない部屋があってよい)
(2)6人を2つのグループに分ける方法は何通り?
(各グループは少なくとも2人以上)
(3)6人を3つのグループに分ける方法は何通り?
(各グループは少なくとも1人以上)
この動画を見る 
PAGE TOP