福田の数学〜京都大学2024年文系第1問〜四面体の体積 - 質問解決D.B.(データベース)

福田の数学〜京都大学2024年文系第1問〜四面体の体積

問題文全文(内容文):
$\Large\boxed{1}$ 四面体OABCが次を満たすとする。
OA=OB=OC=1, ∠COA=∠COB=∠ACB, ∠AOB=90°
このとき、四面体OABCの体積を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 四面体OABCが次を満たすとする。
OA=OB=OC=1, ∠COA=∠COB=∠ACB, ∠AOB=90°
このとき、四面体OABCの体積を求めよ。
投稿日:2024.03.12

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第1問(5)〜対数方程式と解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(5)$x\neq 2$である正の実数xに対して、方程式
$\log_{10}x+\log_{100}x^2-\log_{0.1}|x-2|=\log_{10}a  (a \gt 0)$
がある。
$(\textrm{i})x=6$のとき、aの値は$\boxed{\ \ ク\ \ }$である。
$(\textrm{ii})$この方程式が異なる3個の実数解をもつとき、aの値の範囲は$\boxed{\ \ ケ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

大学入試問題#158 名古屋市立大学(2020) 2項展開の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ますただ
問題文全文(内容文):
$(x+2y)^2(x+2y+3z)^4$を展開した時
$x^4y^2,x^3y^2z$の係数をそれぞれ求めよ。

出典:2020年名古屋市立大学 入試問題
この動画を見る 

名古屋大 指数 整数 方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^a=y^b=z^c=xyz$を満たす1でない3つの正の実数の組$(x,y,z)$が、少なくとも1組存在するような自然数の組$(a,b,c)$
$a \leqq b \leqq c$を全て求めよ

出典:2002年名古屋大学 過去問
この動画を見る 

特性方程式て何だよ!漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=b,a_4=20$
$a_{n+2}=4a_{n+1}-4a_n$
一般項を求めよ.

北海学園大過去問
この動画を見る 

大学入試問題#512「受験生の心は折れる」 浜松医科大学(2015) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{(3n^2+1^2)(3n^2+2^2)・・・(3n^2+n^2)}{(n^2+1^2)(n^2+2^2)・・・(n^2+n^2)})^{\frac{1}{n}}$

出典:2015年浜松医科大学 入試問題
この動画を見る 
PAGE TOP