問題文全文(内容文):
媒介変数表示
で表される図形Cを考える。
(1)Cは頂点 、焦点 、
漸近線 をもつ双曲線である。
(2)双曲線Cと直線 は、2点
で交わる。\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}
2021上智大学理工学部過去問
で表される図形Cを考える。
(1)Cは頂点
漸近線
(2)双曲線Cと直線
で交わる。\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}
2021上智大学理工学部過去問
単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
媒介変数表示
で表される図形Cを考える。
(1)Cは頂点 、焦点 、
漸近線 をもつ双曲線である。
(2)双曲線Cと直線 は、2点
で交わる。\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}
2021上智大学理工学部過去問
で表される図形Cを考える。
(1)Cは頂点
漸近線
(2)双曲線Cと直線
で交わる。\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}
2021上智大学理工学部過去問
投稿日:2021.08.24