大学入試問題#751「定石通り」 東京女子医科大学(2002) #複素数 - 質問解決D.B.(データベース)

大学入試問題#751「定石通り」 東京女子医科大学(2002) #複素数

問題文全文(内容文):
$z^3+|\bar{ z }|=0$を満たす複素数$z$をすべて求めよ

出典:2002年東京女子医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$z^3+|\bar{ z }|=0$を満たす複素数$z$をすべて求めよ

出典:2002年東京女子医科大学 入試問題
投稿日:2024.03.01

<関連動画>

大学入試問題#135 横浜市立大学(2020) 定積分 個人的には難

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\displaystyle \frac{dx}{\sin^3x\ \cos\ x}$

出典:2020年横浜市立大学 入試問題
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の曲線
$C:y=x^3-x$
を考える。
(1)座標平面上の全ての点Pが次の条件$(\textrm{i})$を満たすことを示せ。
$(\textrm{i})$点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。
(2)次の条件$(\textrm{ii})$を満たす点Pのとりうる範囲を座標平面上に図示せよ。
$(\textrm{ii})$点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。

2022東京大学理系過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第4問〜円順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
アルファベットのAと書かれた玉が1個、Dと書かれた玉が1個、Hと書かれ
た玉が1個、Iと書かれた玉が1個、Kと書かれた玉が2個、Oと書かれた玉が
2個ある。これら8個の玉を円形に並べる。
(1) 時計回りにHOKKAIDOと並ぶ確率を求めよ。
(2) 隣り合う子音が存在する確率を求めよ。ここで子音とは、D, H, K の3文字
(玉は4個)のことである。
(3) 隣り合う子音が存在するとき、それがKKだけである条件つき確率を求めよ。

2022北海道大学理系過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第1問(1)〜ユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)44311と43873との最大公約数は$\boxed{\ \ ア\ \ }$である。
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(1)〜複素数の計算とド・モアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)整数a,bは等式$(a+bi)^3=-16+16i$を満たす。ただし、iは虚数単位とする。
$(\textrm{i})a=\boxed{\ \ ア\ \ }, b=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})\frac{i}{a+bi}-\frac{1+5i}{4}$を計算すると$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP