大学入試問題#751「定石通り」 東京女子医科大学(2002) #複素数 - 質問解決D.B.(データベース)

大学入試問題#751「定石通り」 東京女子医科大学(2002) #複素数

問題文全文(内容文):
$z^3+|\bar{ z }|=0$を満たす複素数$z$をすべて求めよ

出典:2002年東京女子医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$z^3+|\bar{ z }|=0$を満たす複素数$z$をすべて求めよ

出典:2002年東京女子医科大学 入試問題
投稿日:2024.03.01

<関連動画>

数学「大学入試良問集」【18−12 絶対値を含む定積分の最大最小】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x-\sin^2\theta|\sin\theta\ d\ \theta$の$0 \leqq x \leqq 1$における最大値と最小値を求めよ。
この動画を見る 

群馬大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\fcolorbox{black}{}{$a$}\fcolorbox{black}{}{$b$}\fcolorbox{black}{}{$c$}\fcolorbox{black}{}{$d$}=(\fcolorbox{black}{}{$a$}\fcolorbox{black}{}{$b$}+\fcolorbox{black}{}{$c$}\fcolorbox{black}{}{$d$})^2$

出典:1978年群馬大学 過去問
この動画を見る 

京大数学で4完半のバケモノに京大過去問を解説してもらう【篠原好】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
文系数学のシノハラ先生が登場!
「京大数学で4完半のバケモノに京大過去問」を解説していただいています。
この動画を見る 

大分大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
大分大学過去問題
$a_1=\frac{1}{2},a_{n+1}=a_n+\frac{2n+1}{2^{n+1}}$
一般項を求めよ。
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART2

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 
PAGE TOP