【高校数学】 数A-14 組み合わせ① ・ 基本編 - 質問解決D.B.(データベース)

【高校数学】  数A-14  組み合わせ① ・ 基本編

問題文全文(内容文):
①$_5C_2=$
②$_8C_3=$
③$_7C_7=$
④$_9C_7=$
⑤$_6C_1=$
⑥$_{14}C_{12}=$

⑦10人の生徒から3人選ぶとき、選び方は何通り?
⑧正七角形の3個の頂点を結んでできる三角形の個数は?
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$_5C_2=$
②$_8C_3=$
③$_7C_7=$
④$_9C_7=$
⑤$_6C_1=$
⑥$_{14}C_{12}=$

⑦10人の生徒から3人選ぶとき、選び方は何通り?
⑧正七角形の3個の頂点を結んでできる三角形の個数は?
投稿日:2014.05.23

<関連動画>

【数A】確率:確率の最大

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
さいころを1000回投げるとき、1の目がちょうどk回出る確率を$P_k$とする。
$P_k$が最大となるkを求めよ。
この動画を見る 

確率の基本問題

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022福岡教育大学過去問題
n=1,2,3,4,5,6
サイコロを3回振って出た目の最大値がnとなる確率を$P_n$
出た目の最小値がnとなる確率を$Q_n$
$P_n$,$Q_n$をnを用いて表せ
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第1問〜ソーシャルディスタンスを保つ座り方の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)ある公園に、図のように(※動画参照)10個の丸い椅子が、
東側に5個横一列に、西側に5個一列に、それぞれ1m間隔で置かれている。また東側の
椅子と西側の椅子は2つずつ背中合わせに置かれていて、その間隔は1mとなっている。
Aさんはいつも東側の椅子のいずれかに、Bさんは西側の椅子のいずれかに、
同じ確率で座る。このとき、AさんとBさんの座る日値がソーシャルディスタンスの
2m以上である確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
なお、AさんもBさんも椅子の中心に座り、ソーシャルディスタンスは座っている
椅子の中心間の距離で測るものとする。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第6問〜期待値から経営戦略を立てる

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$A社はB氏を報酬wで雇っている(wは正の実数)。A社の売り上げはB氏の努力水準に
依存しており、B氏の努力水準が低いとA社の売り上げは200だが、B氏の努力水準が
高い場合、A社の売り上げは70%の確率で500となり、30%の確率で200のままとなる。
そして、このことはB氏も知っている。ただし、B氏は努力水準を高める際に17.5の
苦痛を感じる。そのため、報酬wの下で努力水準を高めると、B氏の実質的な報酬は
w-17.5となってしまう。B氏は完全にテレワークをしており、B氏の努力水準を
A社が直接知ることはできないし、B氏が努力水準を高めるように強制することも
できない。すると$w \gt w-17.5$であることから、B氏は努力水準を高めないことが
合理的な行動となる。
以下では、不確実性下の意思決定を扱っているが(1),(2),(3)のいずれにおいても、
A社、B氏共に期待値の大小のみに関心があるものと仮定して解答すること。

(1)いま、A社は売上が500になったあときにはB氏の報酬を$w_1$に引き上げ、200のとき
には$w_0$に据え置くアイデアを思いついた。B氏が努力水準を高めるには、
$w_1 \geqq w_0+\boxed{\ \ アイウ\ \ }.\boxed{\ \ エオ\ \ }$である必要がある。

次に、B氏は、A社をやめても他の会社に報酬100で雇われることが可能であるとする。
(2)A社の利潤を売上からB氏への報酬を引いた残りだと単純化すると、$w_1$と$w_0$を適切に
定めることにより、B氏にA社をやめさせず、かつ努力水準を高めさせるためには、
A社の利潤の期待値を$\boxed{\ \ カキク\ \ }.\boxed{\ \ ケコ\ \ }$以下とする必要がある。
また、A社の利潤の期待値が最大化された時、$w_1:w_0=5:4$を満たす$w_0$の値は
$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$

以下では、B氏の$w_0$の値をこの$w_0$の値をこの$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$とする。
(3)実は、B氏の関心は報酬wそのものではなく、そこから得られる満足と解釈される
$10\sqrt w$であることが分かった。そのため、努力水準を高める際の苦痛17.5もこの値
から差し引かれ、努力水準を高めたときのB氏の満足は$10\sqrt w-17.5$となる。
B氏は(実質的な)報酬を最大化する人ではなく、満足を最大化する人だとしたとき、
B氏にA社をやめさせず、かつ努力水準を高めさせえるためには、$w_1 \geqq \boxed{\ \ タチツ\ \ }.\boxed{\ \ テト\ \ }$

2021慶應義塾大学総合政策学部過去問
この動画を見る 

【高校数学】 数A-30 条件付き確率②

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①数本の当たりくじを含む10本のくじを,まずAが1本引き,
もとにもどさずにBが1本引くとき,
2人がともに当たりくじを引く確率は$\dfrac{2}{15}$であった.
当たりくじの本数を求めよう.

②箱$a,b$には,右の表のようにくじが入っている.
$a,b$から 1つの箱を選び,その中から1本くじを引く.
当たりくじを引いたとき,それが箱$a$の当たりくじである確率を求めよう.

図は動画内参照
この動画を見る 
PAGE TOP