東京医科歯科大 複素数 - 質問解決D.B.(データベース)

東京医科歯科大 複素数

問題文全文(内容文):
(1)
$1+z+z^2+z^3+z^4=0$
$z$は複素数
$(1-z)(1-z^2)(1-z^3)(1-z^4)$

(2)
絶対値1、偏角$2\theta$
$0 \leqq \theta \lt \pi$の複素数$w$に対し、$r=|1-w|$とする。
$\sin \theta$を$r$を用いて表せ

東京医科歯科大学過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$1+z+z^2+z^3+z^4=0$
$z$は複素数
$(1-z)(1-z^2)(1-z^3)(1-z^4)$

(2)
絶対値1、偏角$2\theta$
$0 \leqq \theta \lt \pi$の複素数$w$に対し、$r=|1-w|$とする。
$\sin \theta$を$r$を用いて表せ

東京医科歯科大学過去問
投稿日:2019.09.06

<関連動画>

福田の数学〜上智大学2021年理工学部第2問(2)〜常用対数の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}} (2)(\textrm{i})$不等式
$\frac{k-1}{k} \lt \log_{10}7 \lt \frac{k}{k+1}$
を満たす自然数$k$は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})7^{35}$は$\boxed{\ \ セ\ \ }$桁の整数である。

2021上智大学理工学部過去問
この動画を見る 

数学「大学入試良問集」【19−16 x軸・y軸回転体の体積の求め方】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#富山県立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
双曲線$x^2-\displaystyle \frac{y^2}{3}=1$と$2$直線$y=3,y=-3$で囲まれた部分を、$x$軸、$y$軸のまわりに1回転してできる立体の体積を、それぞれ$V_1,V_2$とする。
$\displaystyle \frac{V_1}{V_2}$を求めよ。
この動画を見る 

福田の数学〜明治大学2024理工学部第3問〜放物線と折れ線の位置関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$座標平面上も曲線$y=x^2$を$C$、直線$y=\frac{3}{4}x-\frac{1}{4}$を$l$とする。$s$を実数とし、直線$x=s$を$m$とする。曲線$C$上の点$P(t,t^2)$に対し、$P$から直線$l$との交点$Q$とする。また、$P$から直線$m$に下ろした垂線と$m$との交点を$R$とする。
$(1)$点$P$と点$Q$の距離$PQ$を$l$の式で表すと、$PQ=\boxed{け}$である。
$(2)$点$P$と点$R$の距離$PR$を$s$と$l$の式で表すと、$PR=\boxed{こ}$である。
$(3)PQ$は$t=\boxed{さ}$のとき、最小値$\boxed{し}$をとる。
$(4)s=\frac{2}{5}$のとき、$PQ=PR$となる点$P$をすべて求め、その$x$座標を小さい順に並べると$\boxed{す}$となる。
$(5)$実数$s$を固定したとき、$PQ=PR$となるような点$P$の個数を$N_s$とする。$N_s=4$となる$s$の範囲は$\boxed{せ}$
この動画を見る 

大学入試問題#632「微分して積分するだけ」 埼玉大学(2017) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$f(x)=x^2e^{-x}+\displaystyle \int_{0}^{x} e^{t-x}f(t)dt$を満たす$f(x)$を求めよ。

出典:2017年埼玉大学 入試問題
この動画を見る 

【祝早稲田合格】和男の勉強法と参考書を紹介【大学受験プロジェクト】新メンバーも募集

アイキャッチ画像
単元: #大学入試過去問(数学)#化学#学校別大学入試過去問解説(数学)#大学入試過去問(化学)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#早稲田大学#数学(高校生)#理科(高校生)#早稲田大学#早稲田大学
指導講師: Morite2 English Channel
問題文全文(内容文):
衝撃スクープ!浪人を経てついに**早稲田合格**を勝ち取った**かず(和男)**の壮絶な裏側が暴露されるぞ!

藤川天のネガキャンで荒れ果てたチャンネルを、かずさんの合格がなんとか回復させたらしい。モリテツ先生が、合格祝いとして**早稲田大学の入学金20万円**を札束で直接手渡しする、生々しいシーンから動画がスタートだ。

かずさんの受験は波乱万丈だ。現役時代、**12月という超直前期**に塾に駆け込み、短期間でやれることだけを進捗管理してもらい、立教大学に合格。しかし進学はせず浪人を選んだ。

浪人中は、計画は**自分で組み**、川井先生に定期的に進捗確認や「本当に理解しているのか」を問う**質疑形式**でサポートを受けていた。数学に関してはレベルが高すぎて、もはや先生と**議論**するほどだったという。

使っていた参考書は、新しく買ったものはほとんどなく、浪人までにやったものを**クオリティを上げる作業**が中心だった。

* **単語帳**は『パス単』の1級レベルまで仕上げた。
* **数学**は『チャート』や『プラチカ』のハイレベルな部分で取りこぼしていたところを埋めた。
* **国語**(古文・漢文)は『古文上達 基礎編』や『漢文ヤマのヤマ』といった、**ド基礎**を時間をかけて染み込ませることに注力した。

そして最大の衝撃事実!かずさんは親に**内緒で受験**しており、なんと**合格発表の前日**までバレていなかった。親が心配で大学の入試情報を調べていたところ、息子がYouTubeに登場しているのを発見したという爆笑エピソードも飛び出した。

ついに始まる早稲田生活。入学式は**富山キャンパスの早稲田アリーナ**で行われるという。モリテツ先生とのTOEICプロジェクト始動の可能性 や、サークルは**テニサーではなく剣道を見に行く**という宣言にも注目だ。
この動画を見る 
PAGE TOP