問題文全文(内容文):
(1)
$1+z+z^2+z^3+z^4=0$
$z$は複素数
$(1-z)(1-z^2)(1-z^3)(1-z^4)$
(2)
絶対値1、偏角$2\theta$
$0 \leqq \theta \lt \pi$の複素数$w$に対し、$r=|1-w|$とする。
$\sin \theta$を$r$を用いて表せ
東京医科歯科大学過去問
(1)
$1+z+z^2+z^3+z^4=0$
$z$は複素数
$(1-z)(1-z^2)(1-z^3)(1-z^4)$
(2)
絶対値1、偏角$2\theta$
$0 \leqq \theta \lt \pi$の複素数$w$に対し、$r=|1-w|$とする。
$\sin \theta$を$r$を用いて表せ
東京医科歯科大学過去問
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$1+z+z^2+z^3+z^4=0$
$z$は複素数
$(1-z)(1-z^2)(1-z^3)(1-z^4)$
(2)
絶対値1、偏角$2\theta$
$0 \leqq \theta \lt \pi$の複素数$w$に対し、$r=|1-w|$とする。
$\sin \theta$を$r$を用いて表せ
東京医科歯科大学過去問
(1)
$1+z+z^2+z^3+z^4=0$
$z$は複素数
$(1-z)(1-z^2)(1-z^3)(1-z^4)$
(2)
絶対値1、偏角$2\theta$
$0 \leqq \theta \lt \pi$の複素数$w$に対し、$r=|1-w|$とする。
$\sin \theta$を$r$を用いて表せ
東京医科歯科大学過去問
投稿日:2019.09.06