地面掘るだけで20兆円貰える確率 - 質問解決D.B.(データベース)

地面掘るだけで20兆円貰える確率

問題文全文(内容文):
片っ端から地面を掘って徳川埋蔵金が出てくる確率を計算
単元: #数学(中学生)#中2数学#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
片っ端から地面を掘って徳川埋蔵金が出てくる確率を計算
投稿日:2023.07.31

<関連動画>

【最初の2分間が全て!今年の的中問題】図形:高知県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平行四辺形$ABCD$の点$E$は辺$AD$上で$AE:ED=1:2$である.
点$F$は辺$BC$上で$BE$と$FD$は平行である.
交点$G$は線分$AC$と線分$BE$の交点であり,交点$H$は線分$AC$と線分$FD$の交点である.
$ \triangle ABG \equiv CDH$を証明しなさい.

高知県高校過去問
この動画を見る 

【高校受験対策/数学】死守-92

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守92

①$12÷(-4)$を計算しなさい。

②$\sqrt{3}×\sqrt{8}$を計算しなさい。

③$(x-4)(x-5)$を展開しなさい。

④二次方程式$x^2-5x+3=0$を解きなさい。

⑤$\frac{336}{n}$の値が、ある自然数の2乗となるような自然数$n$のうち、
最も小さいものを求めなさい。

⑥右の表は、ある中学校の生徒30人が1か月に読んだ本の冊数を調べて、度数分布表に整理 したものである。
ただし、一部が汚れて度数が見えなくなっている。
この度数分布表について、3冊以上6冊未満の階級の相対度数を求めなさい。

⑦右の図のように、五角形$ABCDE$があり、$\angle BCD=105°,$$\angle CDE=110°$である。
また、頂点$A,E$における外角$B$の大きさがそれぞれ$70°,80°$であるとき、
$\angle ABC$の大きさを求めなさい。

⑧二次関数$y=\frac{5}{2}x+a$のグラフは点$(4,3)$を通る。
このグラフと$y$軸との交点の座標を求めなさい。
この動画を見る 

高校入試だけど確率漸化式!?西大和学園2022入試問題解説100問解説!!58問目

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#数列#漸化式#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
正四面体の頂点を、点Pが1秒ごとに今ある頂点以外の頂点に等しい確率で移動する
点Pが最初に点Aにあるとき4秒後に点Aにある確率は?
*図は動画内参照

2022西大和学園高等学校
この動画を見る 

【中2 数学】  中2-46  三角形の合同①

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 三角形の合同①
以下の問に答えよ
◎合同になる?
① 2つの内角が 40 °と 50 °の三角形 → (   )
② 1辺の長さが 5 cm の正三角形 → (   )
③ 等しい辺の長さが 7 cm の二等辺三角形 → (   )
◎どれとどれが合同?(条件もえらぼう!)
<三角形ABC、DEF、GHI、JKL、MNO、PQR、STU (7つ)の図>
(   )・・条件:(   )
(   )・・条件:(   )
(   )・・条件:(   )
※図は動画内参照
この動画を見る 

【中学数学】連立方程式標準の宿題Live【中2夏期講習②】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$
(1)
\left\{
\begin{array}{l}
0.2x-0.3y=0.7x+0.4y-0.6 \\
6(5x+2y)=3x-2
\end{array}
\right.
$

$
(2)
\left\{
\begin{array}{l}
\displaystyle \frac{4}{3}x-\frac{3}{4}y=-14\\
0.3x-0.7y=-7.4
\end{array}
\right.
$

$
(3)
\left\{
\begin{array}{l}
\displaystyle \frac{5x+3y}{4}=\frac{x+5}{2}\\
\displaystyle \frac{4x-7y+3}{11}=2
\end{array}
\right.
$

$
(4)x-3y=5x+3y=4x-y+5
$

$(5)
\left\{
\begin{array}{l}
ax-by=1\\
bx-ay=8
\end{array}
\right.
$
の解が$(x,y)=(3,2)$のとき、定数$a,b$の値を求めよ
この動画を見る 
PAGE TOP