福田の数学〜過去の入試問題(期間限定)〜慶應義塾大学理工学部2020第5問〜平面ベクトルと面積比 - 質問解決D.B.(データベース)

福田の数学〜過去の入試問題(期間限定)〜慶應義塾大学理工学部2020第5問〜平面ベクトルと面積比

問題文全文(内容文):
$\fbox{5}$ 平行四辺形$ABCD$において、$AB=2, BC=3$とし、対角線$AC$の長さを$4$とする。 辺$AB, BC, CD, DA$上にそれぞれ点$E, F, G, H$を$AE=BF=CG=DH=x$を満たすようにとる。ただし、$x$は$0x<2$の範囲を動くとする。さらに、対角線$AC$上に点$P$を$AP=x^2$を満たすようにとる。以下では、平行四辺形$ABCD$の面積を$S$とする。
(1) $\triangle$$AEP$の面積を$T_1$とする。$\frac{T_1}{S}$は、$x$を用いて表すと$\fbox{ テ }$となる。
(2) $\triangle$$EFP$ の面積を$T_2$とする。$\frac{T_2}{S}$は、$x=$$\fbox{ ト }$のとき最大値$\fbox{ ナ }$をとる。
(3) $\triangle$$GHP$の面積を$T_3$とする。$\frac{T_3}{S}$となるのは$x=$$\fbox{ ニ }$のときである。
(4) 点$P$が線分$EH$上にあるのは$x=$$\fbox{ ヌ }$のときである。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{5}$ 平行四辺形$ABCD$において、$AB=2, BC=3$とし、対角線$AC$の長さを$4$とする。 辺$AB, BC, CD, DA$上にそれぞれ点$E, F, G, H$を$AE=BF=CG=DH=x$を満たすようにとる。ただし、$x$は$0x<2$の範囲を動くとする。さらに、対角線$AC$上に点$P$を$AP=x^2$を満たすようにとる。以下では、平行四辺形$ABCD$の面積を$S$とする。
(1) $\triangle$$AEP$の面積を$T_1$とする。$\frac{T_1}{S}$は、$x$を用いて表すと$\fbox{ テ }$となる。
(2) $\triangle$$EFP$ の面積を$T_2$とする。$\frac{T_2}{S}$は、$x=$$\fbox{ ト }$のとき最大値$\fbox{ ナ }$をとる。
(3) $\triangle$$GHP$の面積を$T_3$とする。$\frac{T_3}{S}$となるのは$x=$$\fbox{ ニ }$のときである。
(4) 点$P$が線分$EH$上にあるのは$x=$$\fbox{ ヌ }$のときである。
投稿日:2025.01.17

<関連動画>

大学入試問題#669「標準運転」 東京女子医科大学(2002) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{(log\ x)^2}{x^3} dx$

出典:2002年東京女子医科大学 入試問題
この動画を見る 

ケンブリッジ大学の入試問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{3-2\sqrt 2} =$
a. $\sqrt 3 -1$
b. $\sqrt 2 -1$
c. $\sqrt 3 -\sqrt 2$

University of Cambridge
この動画を見る 

浜松医大 確率 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
アリがAを出発し、1秒に一辺歩きGに達すると停止する。
辺上を歩き頂点においてどこにいくかは等確率。
n秒後にGに到達する確率。
*図は動画内参照
この動画を見る 

東工大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,b,c$が$3a=b^3,5a=c^2$を満たす。
$d^6$が$a$を割り切るような自然数$d$は$d=1$のみ。
(1)
$a$は3と5で割り切れることを示せ

(2)
$a$の素因数は3と5以外にないことを示せ

(3)
$a$を求めよ

出典:2006年東京工業大学 過去問
この動画を見る 

早稲田 3次方程式と5次方程式の実数解の大きさ Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
$x^3-3x-1=0$の実数解の最大のものをα
$x^2-2x^3-3x-m=0$の実数解の最大のものをβ(mは自然数)
(1)$\sqrt3 <α<2$を示せ
(2)β<αを満たす最大のm
この動画を見る 
PAGE TOP