#29 数検1級1次 過去問 解と係数の関係 - 質問解決D.B.(データベース)

#29 数検1級1次 過去問 解と係数の関係

問題文全文(内容文):
$x^3+2x^2+4x+7=0$の3つの解を$\alpha,\beta,\gamma$とする
$\alpha^4,\beta^4,\gamma^4$の値を求めよ。
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^3+2x^2+4x+7=0$の3つの解を$\alpha,\beta,\gamma$とする
$\alpha^4,\beta^4,\gamma^4$の値を求めよ。
投稿日:2021.11.08

<関連動画>

#35 数検1級1次 過去問 複素数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数平面#複素数#複素数平面#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ 1+\sqrt{ 3 }i }+\sqrt{ 1-\sqrt{ 3 }i }$を簡単にせよ
ただし、外側の平方根の実数部の値は正とする。
この動画を見る 

微分方程式①【微分方程式の最初】(高専数学、数検1級解析)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
微分方程式
x:tの関数
$\frac{d^nx}{dt^n}+3\frac{d^3x}{dt^3}+2\frac{dx}{dt}+1=0$
(n>3)のとき
n階微分方程式
$\frac{dx}{dt}=-k(x-1):1階微分方程式\cdots*$
$x=(c-1)e^{-kt}+1$
*の解である

$左辺=\frac{dx}{dt}=-k(c-1)e^{-kt}$
$右辺=-k((c-1)e^{-kt}+1-1)$
$=-k(c-1)e^{-kt}$
∴左辺=右辺
c≠0
(1)$x=\frac{c}{t}$が解となる
微分方程式を求めよ
(2)曲線$x=ce^{2t}$が解曲線となる微分方程式を求めよ。
この動画を見る 

重積分⑦-1【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
変数変換(極座標)
$x=rcosθ$ $y=rsinθ$
$∬_D f(x,y)dxdy=∬_D f(rcosθ,rsinθ)rdrdθ$

(1)$∬_D \sqrt{x^2+y^2}dxdy$
$D : 4 \leqq x^2+y^2 \leqq 9$

(2)$∬_D sin\sqrt{x^2+y^2}dxdy$
$D : x^2+y^2 \leqq x^2$
この動画を見る 

#67数学検定1級1次「こんな問題で時間使いたくない」 #因数分解

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$xy(x^2-y^2)+yz(y^2-z^2)+zx(z^2-x^2)$を因数分解せよ

出典:数検1級1次
この動画を見る 

20年5月数学検定1級1次試験(三角関数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣
$tan(2Arctan \frac{1}{3} + Arctan \frac{1}{12} )$
この動画を見る 
PAGE TOP